
F.E. Sem - 2 CBCGS SPA – MAY 17

Q.1.a.) Convert 0010 0100 0010 1101 from base 2 to decimal. Convert 134 from

base 10 to hexadecimal. Write steps for conversion.

Ans:

 Binary to decimal: The steps to be followed are:

1. Multiply the binary digits (bits) with powers of 2 according to their positional

weight.

2. The position of the first bit (going from right to left) is 0 and it keeps on

incrementing as you go towards left for every bit.

3. Given: (0010 0100 0010 1101)2 = (?)10

4. 0*215+0*214+1*213+0*212+0*211+1*210+0*29+0*28+0*27+0*26+1*25+0*24+1*23+1

*22+0*21+1*20

=0+0+8192+0+0+1024+0+0+0+0+32+0+8+4+1

=9261

(0010 0100 0010 1101)2 = (9261)10

Decimal to hexadecimal: The steps to be followed are:

1. Divide the decimal number by 16. Treat the division as an integer division.

2. Write down the remainder (in hexadecimal).

3. Divide the result again by 16. Treat the division as an integer division.

4. Repeat step 2 and 3 until result is 0.

5. The hexadecimal value is digit sequence of the reminders from last to first.

6. Given: (134)10 = (?)16

 16 134

 16 8 6

0 8

 (134)10 = (86)16

Q.1.b) Enlist all data types in C language along with their memory requirement,

format specifiers and range.

Ans:

Sr.
NO.

Data Type Type of data to
be stored

Range Space required
in memory
(bytes)

1. Char 1 character in
ASCII form

-127 to 128 1

2. Signed char 1 character in
ASCII

-127 to 128 1

3. Unsigned char 1 character in
ASCII form

0 to 255 1

4. Int Integer nos. -32768 to 32767 2

5. Signed Int Integer nos. -32768 to 32767 2

6. Unsigned Int Integer nos. 0 to 65535 2

7. Short Int Integer nos. -32768 to 32767 2

8. Long int Integer nos. -2147483648 to
2147483647

4

9. Signed short int Integer nos. -32768 to 32767 2

10. Signed Long int Integer nos. -2147483648 to
2147483647

4

11. Unsigned short int Integer nos. 0 to 65535 2

12. Unsigned long int Integer nos. 0 to
4294967296

4

13. Float Fraction nos. 3.4e-38 to 3.4e38 4

14. Double Fraction nos. 1.7e-308 to
1.7e308

8

15. Long double Fraction nos. 3.4e-4932 to
1.1e4932

10

Q.1.c) Draw flowchart for “if…else” and “while” statement of C language.

Ans:

 If…..else flowchart

 FALSE

 TRUE

 While flowchart

 FALSE

 True

Test Expression

Body of if Body of else

Test Expression

Body of while Loop

Statement just below while

Q.1.d) What is the usage of storage classes? Explain extern storage classes with

suitable example.

Ans:

1. The different locations I the computer where we can store data and their

accessibility, initial values etc. vary based on the way they are declared. These

different ways are termed as different storage classes.

2. In C, we have four storage classes namely

i. Automatic

ii. Register

iii. Static

iv. Extern or Global.

Extern Classes:

1. In this case data is stored in memory.

2. The initial variable of such variable is zero.

3. The scope of the variable is zero i.e. it is accessible from anywhere in the

program.

4. The life of such variable is till the program is alive.

5. Let us see the example

#include<stdio.h>

#include<conio.h>

int a=5;

void main

{

 Int a=10;

 printf(“%d\n”,a);

 printf(“%d\n”,::a);

a=::a+a;

printf(“%d\n”,a);

printf(“%d\n”,::a);

::a=a;

printf(“%d\n”,a);

printf(“%d\n”,::a);

getch();

}

Output:

 10

 5

 15

 5

 15

 15

Q.1.e) Differentiate between structure and union.

Ans:

Sr. NO. Structure Union

1. Memory allotted to structure is
equal to the space require
collectively by all the members of
the structure.

Memory allotted for a union is equal to
the space required by the largest
memory of that union

2. Data is more secured in structure. Data can be corrupted in a union.

3. Structure provide ease of
programming.

Unions are comparatively difficult for
programming.

4. Structures require more memory. Unions require less memory.

5. Structure must be used when
information of all the member
elements of a structure are to be
stored.

Unions must be used when only one of
the member elements of the union is
to be stored.

Q.2.a) What is the need of computer programming. What do you mean by

structured programming? Develop an ALGORITHM and FLOWCHART to find reverse

of a number.

Ans:

1. Programming is to give the machine a list of steps to perform a particular task.

2. If the system to which programming is done is a computer than it is called as

Computer programming.

3. A programming of any system has to be done in the language understood by

that system.

4. Programming languages are an interface between humans and computer,

they allow us to communicate with computers in order to do awesome

things.

5. Structured programming (SP) is a technique devised to improve the

reliability and clarity of programs

6. In SP, control of program flow is restricted to three structures, sequence,

IF THEN ELSE, and DO WHILE, or to a structure derivable from a

combination of the basic three. Thus, a structured program does not

need to use GO TOs or branches (unless it is written in a language that

does not have statement forms corresponding to the SP structures, in

which case, GO TOs may be used to simulate the structures).

7. The result is a program built of modules that are highly independent of

each other.

8. In turn, this allows a programmer to be more confident that the code

contains fewer logic errors and will be easier to debug and change in the

future.
9. However, SP may be less efficient than an unstructured counterpart.

Algorithm:

1. START

2. PRINT “Enter a number”

3. INPUT n.

4. d1 = n mod 10

5. d2 = n/10

6. PRINT d1, d2.

7. STOP.

Flowchart:

START

PRINT “Enter a

number”

INPUT n

d1 = n mod 10

d2 = /10

PRINT d1,d2

STOP

Q.2.b) Write a menu driven program to perform arithmetic operations on two

integers. The menu should be repeated until user selects “STOP” option. Program

should have independent user defined functions for each case.

Ans:

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int operator,ans;

 double firstNumber,secondNumber;

 clrscr();

 do

 {

 printf("Enter a operation:\n1.Addition\n2.Subtraction\n3.Multiplication\n4.Divison");

 scanf("%d", &operator);

 printf("Enter two operands: ");

 scanf("%lf %lf",&firstNumber, &secondNumber);

 switch(operator)

 {

 case 1:

 printf("%.1lf + %.1lf = %.1lf",firstNumber, secondNumber, firstNumber +

secondNumber);

 break;

 case 2:

 printf("%.1lf - %.1lf = %.1lf",firstNumber, secondNumber, firstNumber -

secondNumber);

 break;

 case 3:

 printf("%.1lf * %.1lf = %.1lf",firstNumber, secondNumber, firstNumber *

secondNumber);

 break;

 case 4:

 printf("%.1lf / %.1lf = %.1lf",firstNumber, secondNumber, firstNumber /

secondNumber);

 break;

 default:

 printf("Error! operator is not correct");

 }

 printf("\nDo you want to continue 1.YES 2. NO");

 scanf("%d",&ans);

 }

 while(ans==1);

 getch();

}

Output:

Enter an Operation:

1. Addition

2. Subtraction

3. Multiplication

4. Division

1

Enter two operands 10 20

10.0 + 20.0 = 30.0

Do you want to continue 1.YES 2.NO 1

 Enter an operation

1. Addition

2. Subtraction

3. Multiplication

4. Division

2

Enter two operands: 50 60

50.0 – 60.0 = -10.0

Do you want to continue 1.YES 2.NO 2

Q.3.a) Write a program to create two integer of size 8 and 7. Initialize the arrays

with random values. Sort the arrays in ascending order with the help of user

defined function namely “sort array”. Merge these arrays with the help of another

user defined function named “merge arrays” which returns a new array. Program

should display the arrays before and after sorting, also the merged arrays.

Ans:

#include<conio.h>

#include<stdio.h>

void main()

{

 int a[25],b[25],sum[50],i,j,k=1,n,m,s,temp;

 clrscr();

 printf("Enter the number of element in first array :");

 scanf("%d",&n);

 printf("\nEnter the element of array :\n");

 for(i=1;i<=n;i++)

 scanf("%d",&a[i]);

 printf("\nEnter the number of element in second array :");

 scanf("%d",&m);

 printf("\nEnter the element of array :\n");

 for(i=1;i<=m;i++)

 scanf("%d",&b[i]);

 s=m+n;

 for(i=1;i<=s;i++)

 {

 if(i<=n)

 {

 sum[i]=a[i];

 }

 else

 {

 sum[i]=b[k];

 k=k+1;

 }

 }

 printf("\n Array before sorting is\n");

 for(i=1;i<=s;i++)

 printf("%d\t",sum[i]);

 for(i=1;i<=s;i++)

 {

 for(j=1;j<=s;j++)

 {

 if(sum[i]<=sum[j])

 {

 temp=sum[i];

 sum[i]=sum[j];

 sum[j]=temp;

 }

 }

 }

 printf("\nElement of array after sorting is :\n");

 for(i=1;i<=s;i++)

 printf("%d\t",sum[i]);

 getch();

}

Output:

Enter the number of elements in first array: 8

Enter the element of array:

1 4 7 8 9 22 66 11

Enter the number of elements in second array: 7

33 55 88 14 16 18 79

Array before sorting is

1 4 7 8 9 22 66 11 33 55 88 14 16 18 79

Array after sorting is

 1 4 7 8 9 11 14 16 18 22 33 55 66 79 88

Q.3.b) What are advantages and disadvantages of recursion? Comment on

conditions to be considered while writing a recursive function. Write a program to

print Fibonacci series up to N terms using a recursive function.

Ans:

Recursion: A function that calls itself is called as recursive function and this

technique is called as recursion.

Advantages:

1. Reduce unnecessary calling of functions.

2. Through Recursion one can solve problems in easy way while its iterative

solution is very big and complex.

3. Extremely useful when applying the same solution.

Disadvantages:

1. Recursive solution is always logical and it is very difficult to trace.

2. In recursive we must have an if statement somewhere to force the
function to return without the recursive call being executed, otherwise the
function will never return.

3. Recursion uses more processor time.

i. A recursive function must definitely have a condition that exits from calling a
function again.

ii. Hence there must be condition that calls the function itselfif that condition is
true.

iii. If the condition is false then it will exit from the loop of calling itself again.

Program:

#include<stdio.h>

#include<conio.h>

void main()

{

 int n,i;

 int fibo(int,int,int);

 clrscr();

 printf(“Enter the number of elements”);

 scanf(“%d”,&n);

 printf(“0\n”);

 for(i=1;i<=n-1;i++)

 {

 printf(“%d\n”,fibo(0,1,i));

 }

 getch();

}

int fibo(int a, int b int i)

{

 if(i==1)

 return b;

 else

 return(fibo(b,a+b,--i));

}

Output:

Enter the number of elements:10

0

1

1

2

3

5

8

13

21

34

Q.4.a) What are structures? Comment on nested structures. Write a program to

read Title, Author and price of 10 books using array of structures. Display the

records in ascending order of Price.

Ans:

Structure:

1. Structure is a collection of multiple data elements that can be of different data

types.

2. Array is a collection of data items of same type, while structure can have data

items of different types.

3. The memory space required to store one variable of structure is equal to the

memory space required by all the elements independently to be stored in memory.

4. syntax

struct structure_name

{

 data_type variable_name;

 data_type variable_name;

 -

 -

}

Program:

#include <stdio.h>

struct book

{

 int price;

 char title[80];

 char author[80];

};

void accept(struct book list[80], int s);

void display(struct book list[80], int s);

void bsortDesc(struct book list[80], int s);

void main()

{

 struct book data[20];

 int n;

 clrscr();

 accept(data,10);

 bsortDesc(data, 10);

 display(data, 10);

 getch();

}

void accept(struct book list[80], int s)

{

 int i;

 for (i = 0; i < s; i++)

 {

 printf("\nEnter title : ");

 scanf("%s", &list[i].title);

 printf("Enter Author name: ");

 scanf("%s",&list[i].author);

 printf("Enter price : ");

 scanf("%d", &list[i].price);

 }

}

void display(struct book list[80], int s)

{

 int i;

 printf("\n\nTitle\t\tAuthor\t\tprice\n");

 printf("-------------------------------------\n");

 for (i = 0; i < s; i++)

 {

 printf("%s\t\t%s\t\t%d\n", list[i].title, list[i].author, list[i].price);

 }

}

void bsortDesc(struct book list[80], int s)

{

 int i, j;

 struct book temp;

 for (i = 0; i < s ; i++)

 {

 for (j = 0; j < (s -i); j++)

 {

 if (list[j].price > list[j + 1].price)

 {

 temp = list[j];

 list[j] = list[j + 1];

 list[j + 1] = temp;

 }

 }

 }

}

Output:

 Enter Title: physics

 Enter Author name: Einstein

 Enter Price:1000

 Enter Title:english

 Enter Author name:willey

 Enter Price:900

 Enter Title:chemistry

 Enter Author name:narayan

 Enter Price:800

 Enter Title:history

 Enter Author name:george

 Enter Price:700

 Enter Title:geography

 Enter Author name:bailey

 Enter Price:600

 Enter Title:AOA

 Enter Author name:Koreman

Enter Price:500

 Enter Title:SPA

 Enter Author name:Harish

 Enter Price:400

 Enter Title:Maths

 Enter Author name:kumbhojkar

 Enter Price:300

 Enter Title:CG

 Enter Author name:hern

 Enter Price:200

 Enter Title:python

 Enter Author name:naryan

 Enter Price:100

 Title Author price

Python Narayan 100

CG hern 200

Maths kumbhojkar 300

SPA Harish 400

AOA koreman 500

Geography bailey 600

History George 700

Chemistry Narayan 800

English willey 900

Physics Einstein 1000

Q.4.b. i) Explain gets() and puts() functions of C language. Comment on their

parameters and return values.

 Ans:

 gets():

1. gets() function is used to scan a line of text from a standard input device.

2. This function will be terminated by a newline character.

3. The newline character won’t be included as part of the string. The string
may include white space characters.

 Syntax :

 char *gets(char *s);

4. This function is declared in the header file stdio.h.

5. It takes a single argument. The argument must be a data item representing
a string. On successful completion, shall return a pointer to string s.

 puts():

 The C library function int puts(const char *str) writes a string to stdout up to

 but not including the null character. A newline character is appended to the

 output.

 Example: int puts(char const*str)

 Parameters: str-this is the C string to be written

 Return value: If successful, non-negative value is returned. On error, the

 function returns EOF.

Q.4.b. ii) Enlist bitwise operator in c language. Explain any 2 with

 examples.

 Ans.

 The bitwise operators are listed below

1. ~ to perform bitwise NOT operation.

2. & to perform bitwise AND operation.

3. | to perform bitwise OR operation.

4. ^ to perform bitwise EXOR operation.

5. << to perform bitwise left shift operation.

6. >> to perform bitwise right shift operation.

AND operator

Example .

5 & 3 = 1

(5)10 = (0 1 0 1)2

(3)10 = (0 0 1 1)2

 (0 0 0 1)2 = (1)10

 OR operator

 Example.

 12 | 9 = 13

 (12)10 = (1 1 0 0)2

 (9)10 = (1 0 0 1)2

 (1 1 0 1)2 = (2)10

Q.5.a) Write a programs to print following patterns for N lines.

 1. 5 4 3 2 *

 5 4 3 * 1

 5 4 * 2 1

 5 * 3 2 1

 * 4 3 2 1

Program:

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int i,j;

 clrscr();

 for(i=1;i<=5;i++)

 {

 for(j=5;j>=1;j--)

 {

 if(i==j)

 printf("*");

 else

 printf("%d",j);

 }

 printf("\n");

 }

 getch();

 }

 Output:

 5 4 3 2 *

 5 4 3 * 1

 5 4 * 2 1

 5 * 3 2 1

 * 4 3 2 1

Q.5.b) 2. 5

 5 4

 5 4 3

 5 4 3 2

 5 4 3 2 1

Program:

 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int i,j;

 clrscr();

 for(i=5;i>=1;i--)

 {

 for(j=1;j<i;j++)

 printf(" ");

 for(j=5;j>=i;j--)

 printf("%d",j);

 printf("\n");

 }

 getch();

 }

 Output:

 . 5

 5 4

 5 4 3

 5 4 3 2

 5 4 3 2 1

Q.5.b) Why files are needed? Explain all the opening modes. Write a program

to create copy of the user specify names of source and destination files.

 Ans. Need of files:

1. When a program is terminated, the entire data is lost. Storing in a file will

preserve your data even if the program terminates.

2. If you have to enter a large number of data, it will take a lot of time to enter

them all. However if you have a file containing all the data, you can easily

access the contents of the file using few commands in c.

3. You can easily move your data from one computer to another without any

changes.

4. The various modes in which a file can be opened are as listed below:

i. “r” indicates that the file is to be opened indicates in the read mode.

ii. “w” indicates that the file is to be opened indicates in the write mode.

When a file is opened in write mode the data written in the file overwrites

the previously stored data in the file.

iii. ”a” indicates that the file is to be opened in the append mode.In this mode

the data written into the file is appended towards the end of the already

stored data in the file.The earlier stored data remains as it is.

iv. “w+” indicates that the file is to be opened in write and read mode.

v. “r+” indicates that the file is to be opened in read and write mode.

//program to create a copy of file.

#include <stdio.h>

#include<conio.h>

#include <stdlib.h>

void main()

{

 char ch, source_file[20], target_file[20];

 FILE *source, *target;

 clrscr();

 printf("Enter name of file to copy\n");

 gets(source_file);

 source = fopen(source_file, "r");

 if(source == NULL)

 {

 printf("Press any key to exit...\n");

 exit(EXIT_FAILURE);

 }

 printf("Enter name of target file\n");

 gets(target_file);

 target = fopen(target_file, "w");

 if(target == NULL)

 {

 fclose(source);

 printf("Press any key to exit...\n");

 exit(EXIT_FAILURE);

 }

 while((ch = fgetc(source)) != EOF)

 fputc(ch, target);

 printf("File copied successfully.\n");

 fclose(source);

 fclose(target);

 getch();

}

 Output:

Enter name of file to copy

 Factorial.c

 Enter name of targt file

 Factorial-copy.c

 File copied successfully

Q.6.a) Comment on dynamic memory allocation. Write a program to read and store

N integers in a Array, where value of N is defined by user. Find minimum and

maximum members from the Array.

Ans. Dynamic memory allocation:

1. Dynamic Memory Allocation refers to managing system memory at runtime.

2. Dynamic memory management in C programming language is performed via a

group four functions namely malloc(), calloc().

3. These four dynamic memory allocation function of the C programming language

are defined in the C standard library header file <stdlib.h>. Dynamic memory

allocation uses the heap space of the system memory.

 malloc()

1. malloc() is used to allocate a block of memory on the heap.
2. Specifically, malloc() allocates the user a specified number of bytes but does not

initialize.
3. Once allocated, the program accesses this block of memory via a pointer

that malloc() returns.
4. The default pointer returned by malloc() is of the type void but can be cast into a

pointer of any data type.
5. However, if the space is insufficient for the amount of memory requested

by malloc().
6. Then the allocation fails and a NULL pointer is returned.
7. The function takes a single argument, which is the size of the memory chunk to

be allocated.

 //program to find maimum and minimum element from the array

 #include<stdio.h>

 #include<conio.h>

 #define MAX_SIZE 100

 void main()

 {

 int arr[MAX_SIZE];

 int i, max, min, size;

 clrscr();

 printf("Enter size of the array: ");

 scanf("%d", &size);

 printf("Enter elements in the array: ");

 for(i=0; i<size; i++)

 {

 scanf("%d", &arr[i]);

 }

 max = arr[0];

 min = arr[0];

 for(i=1; i<size; i++)

 {

 if(arr[i] > max)

 {

 max = arr[i];

 }

 if(arr[i] < min)

 {

 min = arr[i];

 }

 }

 printf("Maximum element = %d\n", max);

 printf("Minimum element = %d", min);

 getch();

}

Output:

 Enter size of the array: 10

 Enter elements in the array:

 6

 4

 3

 8

 9

 12

 65

 87

 54

 24

 Maximum element=87

 Minimum element=3

 Q.6.b) Explain any 4 functions from string.h header file with suitable examples.

 Ans:

 Functions from string.h header file are as follows

 strlen() function

1. This function returns an integer value that is the length of the string passed to

the function.

2. When returning the length of the string it does not consider the space required

for null Character.

3. Hence it returns the exact length of the string neglecting these space required

for null character.

 Example:

 #include<conio.h>

 #include <stdio.h>

 #include<string.h>

 {

 Int l;

 char a[100];

 clrscr();

 printf(“enter a string\n”);

 gets(a);

 l=strlen(a);

 printf(“the length of the entered string is: %d”,l);

 getch();

 }

 Output:

 Enter a string

 Hello

 The length of the entered string is 5

 2. strcpy() function

 This function copies the second string into the first string passed to the function.

 The second string remains unchanged. Only the first string is changed and gets a

 copy of the second string.for e.g. strcpy(str1,str2), will copy the string “str2” into

 the string “str1”.

 Example:

 #include<conio.h>

 #include<stdio.h>

 #include<string.h>

 void main()

 {

 char a[100],b[100];

 clrscr();

 printf(“enter a string\n”);

 gets(a);

 strcpy(b,a);

 printf(“the new string is %s”,b);

 getch();

 }

 Output:

 Enter a string

 Hello, how are you?

 The new string is Hello, how are you?

3.Strcmp() function

 This function compares the two string variables passed to it.it returns an integer

 value equal to:

1. 0(zero),if the two strings are equal.

2. Negative value ,if the first string is smaller than the second string.

3. Positive value,if the first string is greater than the second string.

 Both the strings remain unchanged.

 The string is smaller means its alphabetical sequence is smaller. For

 Example: ”Hello” is lesser than “Hi”; because the first character “H” is same, but

the second character “e” is smaller than “I”. ”e” is smaller than “I” because “e” comes

before “i” in the alphabets i.e. A,B,C, ……Z. the function compares the ASCII value of the

characters.

 Example:

 #include<stdio.h>

 #include<conio.h>

 #include<string.h>

 void main()

 {

 char a[100],b[100];

 clrscr();

 printf(“enter two strings:\n”);

 gets(a);

 gets(b);

 if(strcmp(a,b)==0)

 printf(“strings are equal “);

 else

 printf(“%s string is greater “,a);

 else

 printf(“%s string is greater”,b);

 getch();

 }

 Output:

 Enter two strings:

 Hello

 Hi

 Hi string is greater

4. strcat() function

This function concatenates (joins) the two string variables passed to it. It

returns a string of the combination of the two in the first string variable.

Example:

 #include<conio.h>

 #include<stdio.h>

 #include<string.h>

 void main()

 {

 char a[100],b[100];

 clrscr();

 printf(“enter two strings:\n”);

 gets(a);

 gets(b);

 strcat(a,b);

 printf(“the concatenated strig is %s”,a);

 getch();

 }

Output:

 Enter two strings:

 Mumbai

 University

 The concatenated string is MumbaiUniversity

Q.6.c) Explain continue and break statements with the help of suitable examples.

 Ans.

1. continue statement-the continue statement also neglects the statements after it

in the Loop and transfers the control back to the starting of the loop for next

iteration.

 *operation of continue statement in a for loop.

 For(initialization;condition;inc/dec)

 {

 -

 -

 Continue;

 -

 -

 }

 *operation of continue statement in a while loop

 while(condition)

 {

 -

 continue;

 -

 }

 *operation of continue statements in a do-while loop

 do

 {

 -

 -

 continue;

 -

 -

 }while(condition);

2.Break statement:

 The break statement neglects the statement after it in the loop and

transfers the control outside the loop

 *operation of break statement in a for loop

 for(initialization;condition;inc/dec)

 {

 -

 -

 break;

 -

 -

 }

 *operation of break statement in a while loop

 while(condition)

 {

 -

 -

 break;

 -

 -

 }

 *operation of break statement in a do-while loop

 do

 {

 -

 -

 break;

 -

 -

 }while(condition);

