Q.P CODE: 37525

[5]

APPLIED MATHEMATICS - IV SOLUTION

(CBCGS SEM -4 MAY 2019)

BRANCH – ELECTRONICS & TELECOMMUNICATION

Q1) If X_1 has a a mean 4 and variance 9 and X_2 has a mean -2 variance 4,

And two are independent, Find $E(2X_1 + X_2 - 3)$ and $V(2X_1 + X_2 - 3)$

Solution: [5]

We have
$$E(X_1) = 4$$
, $V(X_1) = 9$, $E(X_2) = -2$ and $V(X_2) = 4$

$$\therefore E(2X_1 + X_2 - 3) = E(2X_1 + X_2) - 3 = 2E(X_1) + E(X_2) - 3$$

$$= 2(4) + (-2) - 3 = 3$$

$$V(2X_1 + X_2 - 3) = V(2X_1 + X_2)$$

$$= 2^{2}V(X_{1}) + V(X_{2})$$
$$= 4(9) + 5 = 41$$

(b) Find the extremal of
$$\int_{x_1}^{x_2} (x + y')y' dx$$

Solution

We have $F = xy' + y'^2$

Since F does 'not contain y explicity MUQuestionPapers.com

Now,
$$F = xy' + y'^2$$
: $\frac{\partial F}{\partial y} = x + 2y'$

But from the formula $\frac{\partial F}{\partial y'} = c$ $\therefore x + 2y' = c$

$$\therefore 2\frac{dy}{dx} = c - x \qquad \qquad \therefore \frac{dy}{dx} = \frac{c}{2} - \frac{x}{2} \qquad \therefore dy = \left(\frac{c}{2} - \frac{x}{2}\right) dx$$

By the integration, we get $y = \frac{c}{2}x - \frac{1}{2}(\frac{x^2}{2}) + c_2$

Taking the arbitrary constant suitably , $y = -\frac{x^2}{4} + c_1 x + c_2$

$$y = -\frac{x^2}{4} + c_1 x + c_2$$

Verify Cauchy Schwartz inequality for the vectors = (-4, 2, 1) and (c)

$$w = (8, -4, -2)$$
 [5]

Solution

We have $\|\mathbf{u}\| = \sqrt{16 + 4 + 1} = \sqrt{21}$ and $\|\mathbf{v}\| = \sqrt{64 + 16 + 4} = \sqrt{84}$

$$||u|| ||v|| = \sqrt{21} \sqrt{84} = 42$$

And $|u.v| = |u_1v_1 + u_2v_2 + u_3v_3|$

$$= |(-4)(8) + (2)(-4) + (1)(-2)|$$

$$= |-32 - 8 - 2| = 42$$

$$\therefore \|u\| \|v\| = |u.v|$$

By Cauchy – Schwartz inequality we should have $|u \cdot v| \le ||u|| ||v||$.

Hence, Cauchy – Schwartz inequality holds good for the given vectors.

MUQuestionPapers.com

(d) Check whether
$$A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$
 is derogatory or not . [5]

Solution:

The characteristic equation of A is

$$\begin{vmatrix} 2 - \lambda & -2 & 3 \\ 1 & 1 - \lambda & 1 \\ 1 & 3 & -1 - \lambda \end{vmatrix} = 0$$

$$(2 - \lambda)[(-(1 - \lambda)(1 + \lambda) - 3] + 2[(-(1 + \lambda) - 1] + 3[3 - (1 - \lambda)] = 0$$

$$(2 - \lambda)[-4 + \lambda^2] - 2[-2 + 2\lambda] + 3[2 + 3\lambda] = 0$$

$$\lambda^3 - 2\lambda^2 - 5\lambda + 6 = 0 \quad \therefore \lambda^3 - \lambda^2 - \lambda^2 + \lambda - 6\lambda + 6 = 0$$

$$(\lambda - 1)(\lambda^2 - \lambda - 6) = 0 \quad \therefore (\lambda - 1)(\lambda - 3)(\lambda - 2) = 0$$

$$\therefore \lambda = 1, -2, 3$$

Since all the roots are distinct and since the characteristic equation are distinct. f(x) = (x-1)(x+2)(x-3) is minimal polynomial. The degree of minimal equaltion is equal to 3. Hence the matrix is non-derogatory

Q2)

(a) Using Cauchy's Residue theorem evaluate
$$\int_c \frac{z-1}{(z+1)^2(z-2)}$$
 where C is $|z| = 4$

Solution:

Clearly z = -1 is a pole of order 2 and z = 2 is a simple pole.

Residue at
$$(z = 2) = \lim_{z \to 2} \left[\frac{(z-2)(z-1)}{(z+1)^2(z-2)} \right] = \lim_{z \to 2} \frac{z-1}{(z+1^2)} = \frac{1}{9}$$

Residue (at
$$z = -1$$
) = $\lim_{z \to -1} \frac{d}{dz} \left[(z+1)^2 \cdot \frac{z-1}{(z+1)^2(z-2)} \right]$

$$= \lim_{z \to -1} \frac{d}{dz} \left(\frac{z-1}{z-2} \right) = \lim_{z \to -1} \left[\frac{(z-2) \cdot 1 - (z-1) \cdot 1}{(z-2)^2} \right] = \lim_{z \to -1} -\frac{1}{9}$$

 $\therefore \int_{C} f(z)dz = 2\pi i (\text{Sum of the residues})$

$$=2\pi i\left(\frac{1}{9}-\frac{1}{9}\right)=0$$

(b) Show that the extremal of the isoperimetric problem

$$I[y(x)] = \int_{x_1}^{x_2} (y')^2 dx$$
 subject to the condition $\int_{x_1}^{x_2} y dx = k$ is a parabola.

Solution:

We have to find y = f(x) such that

$$\int_{x_1}^{x_2} F dx = \int_{x_1}^{x_2} y'^2 dx$$
 (1)

is minimum subject to the condition $\int_{x_1}^{x_2} G dx = \int_{x_1}^{x_2} y dx = k$(2)

To use Lagrange's equation , we multiply (2) by λ and add it to (1)

$$\therefore H = F + \lambda G = \int_{x_1}^{x_2} (y'^2 + \lambda y) \, dx....(3)$$

Since the integrand is free from x, we use

$$F - y' \frac{\partial F}{\partial y'} = c....(4)$$

Where,
$$F = H = y'^2 + \lambda y$$
(5)

Hence from (4) using (5) we get

$$y'^{2} + \lambda y - y' \cdot 2y' = c$$
 $\therefore -y'^{2} + \lambda y = c$

$$\therefore {y'}^2 - \lambda y = -c = c_1$$

$$\therefore y' = \sqrt{c_1 + \lambda y} \qquad \therefore \frac{dy}{\sqrt{c_1 + \lambda y}} = dx$$

Integrating we get

$$\frac{2}{\lambda}\sqrt{c_1 + \lambda y} = x + c_2 \qquad \therefore \sqrt{c_1 + \lambda y} = \frac{\lambda}{2}(x + c_2)$$

$$(c_1 + \lambda y) = \left(\frac{\lambda}{2}\right)^2 (x + c_2)^2 \qquad \therefore \lambda y = \frac{\lambda^2}{2} x^2 + \frac{\lambda^2}{2} c_2 x + \frac{\lambda^2}{4} c_2^2 - c_1$$

$$\therefore y = \frac{\lambda}{4}x^2 + \frac{c_2\lambda}{2}x + \left(\frac{\lambda}{4}c_2^2 - \frac{c_1}{\lambda}\right) = \frac{\lambda}{4}x^2 + c'x + c''$$

This is a parabola..

(c) Is the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ diagonizable ? If so find the diagonal matrix and the transforming matrix. [8]

Solution:

The characteristic equation of A is

$$\begin{vmatrix} 2-\lambda & 1 & 1\\ 1 & 2-\lambda & 1\\ 0 & 0 & 1-\lambda \end{vmatrix} = 0$$

$$\therefore (2-\lambda)[(2-\lambda)(1-\lambda)-0]-1[1(1-\lambda)-0]+1[0-0]=0$$

$$\therefore (2-\lambda)(2-\lambda)(1-\lambda)-(1-\lambda)=0$$

$$\therefore (1 - \lambda)[(2 - \lambda)(2 - \lambda) - 1] = 0 \qquad \therefore (1 - \lambda)(4 - 4\lambda + \lambda^2 - 1) = 0$$

$$\therefore (1 - \lambda)(\lambda^2 - 4\lambda + 3) = 0$$

$$\therefore (1 - \lambda)(\lambda - 3)(\lambda - 1) = 0 \qquad \qquad \therefore \lambda = 1,1,3$$

Since the Eigen values are repeated the matrix A may be or may not be diagonalisable.

(i) For
$$\lambda = 3$$
, [A – $\lambda_1 I$] X = 0 gives

$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
by
$$R_2 + R_1 \begin{bmatrix} -1 & 1 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

By
$$R_3 + R_2 & \frac{1}{2}R_2 \begin{bmatrix} -1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\therefore -x_1 + x_2 + x_3 = 0$$
 , $x_3 = 0$

Putting $x_2 = t$, we get $x_1 = t$

$$X_1 = \begin{bmatrix} t \\ t \\ 0 \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
 : Eigenvector is [1,1,0]

There are three variables and the rank is 2, hence, there is only 3-2=1 is the independent solution.

For $\lambda=3$ alegrbric multiplicity =1 and the geometric multiplicity -=1

(ii) For
$$\lambda = 1$$
, $[A - \lambda_2 I]$ $X = 0$ gives

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

By
$$R_2 - R_1$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \therefore \qquad x_1 + x_2 + x_3 = 0$$
Let $x_2 = -s$, $x_3 = -t$
$$\therefore x_1 = s + t$$

$$X_2 = \begin{bmatrix} s+t \\ -s+0 \\ 0-t \end{bmatrix} = \begin{bmatrix} s \\ -s \\ 0 \end{bmatrix} + \begin{bmatrix} t \\ 0 \\ -t \end{bmatrix} = s \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

$$\therefore X_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} \text{ and } X_3 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

There are three variables and the rank of the matrix is one and hence there are 3-1=2 independent vectors.

 \therefore For $\lambda=1$, since the eigen value is repeated twice, the algebric multiplicity =2 and since X_2 , X_3 are two independent vectors corresponding to $\lambda=1$, the geometry multiplicity = 2. Since the algebric multiplicity and geometric multiplicity are equal

then the matrix is diagonalisable.

The diagonalising matrix is $M = \begin{bmatrix} X_1 & X_2 & X_3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$

Thus, the given matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ is diagonalised to the

diagonal matrix

$$D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

By transforming matrix, $M = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$

Now, verifying $M^{-1}AM =$. We shall first obtain M^{-1} by elementary transformations.

For this we write A = IA Where A = M

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

By
$$R_2 - R_1$$
 $\begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 & -1 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$

By
$$R_1 + R_3$$
 $\begin{bmatrix} 1 & 1 & 0 \\ 0 & -2 & -1 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$

By
$$R_2 - R_3$$
, $R_1 + \frac{1}{2}R_2$, $-\frac{1}{2}R_2 - R_3$

We get
$$M^{-1} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & -1 \end{bmatrix}$$

Now,
$$M^{-1}AM = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 3 & 1 & 1 \\ 3 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = D$$

Q3)

(a) Verify Cayley – Hamilton theorem for
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix}$$
 and hence find A^{-1} .

Solution:

The characteristic Equation is
$$\begin{vmatrix} 1 - \lambda & 2 & 3 \\ 2 & -1 - \lambda & 4 \\ 3 & 1 & -1 - \lambda \end{vmatrix} = 0$$

$$\therefore (1 - \lambda)[(1 + \lambda)(1 + \lambda) - 4] - 2[-2(1 + \lambda) - 12] + 3[2 + 3(1 + \lambda)] = 0$$

$$\therefore (1 - \lambda)(-3 + 2\lambda + \lambda^2) + 2(14 + 2\lambda) + 3(5 + 3\lambda) = 0$$

$$\therefore (-3 + 2\lambda + \lambda^2 + 3\lambda - 2\lambda^2 - \lambda^3 + 28 + 4\lambda + 15 + 19\lambda = 0$$

$$\lambda^3 + \lambda^2 - 18\lambda - 40 = 0$$
(1)

Cayley – Hamilton Theorem states that this equation is satisfies by A i.e

$$A^3 + A^2 + 18A - 40I = 0$$

Now
$$A^2 = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 14 & 3 & 8 \\ 12 & 9 & -2 \\ 2 & 4 & 14 \end{bmatrix}$$

$$A^{3} = \begin{bmatrix} 14 & 3 & 8 \\ 12 & 9 & -2 \\ 2 & 4 & 14 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 44 & 33 & 46 \\ 24 & 13 & 74 \\ 52 & 14 & 8 \end{bmatrix}$$

It can be seen that

$$A^3 + A^2 - 18A - 40I$$

$$= \begin{bmatrix} 44 & 33 & 46 \\ 24 & 13 & 74 \\ 52 & 14 & 8 \end{bmatrix} + \begin{bmatrix} 14 & 3 & 8 \\ 12 & 9 & -2 \\ 2 & 4 & 14 \end{bmatrix} - \begin{bmatrix} 18 & 36 & 54 \\ 36 & -18 & 72 \\ 54 & 18 & -18 \end{bmatrix} - \begin{bmatrix} 40 & 0 & 0 \\ 0 & 40 & 0 \\ 0 & 0 & 40 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus the theorem is verified.

(a) Now multiplying (1) by
$$A^{-1}$$
, we get $A^2 + A - 18I - 40A^{-1} = 0$

$$\therefore 40A^{-1} = A^2 + A - 18I....(2)$$

$$\therefore 40A^{-1} = \begin{bmatrix} 14 & 3 & 8 \\ 12 & 9 & -2 \\ 2 & 4 & 14 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & -1 \end{bmatrix} - 18 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 5 & 11 \\ 14 & -10 & 2 \\ 5 & 5 & -5 \end{bmatrix}$$

$$\therefore A^{-1} = \frac{1}{40} \begin{bmatrix} -3 & 5 & 11\\ 14 & -10 & 2\\ 5 & 5 & -5 \end{bmatrix}$$

(b) Check whether the following are subspace of R^3

[6]

- **(I)**
- $W = \{(a, 0, 0)\} \ a \in R \quad (II) \ W = \{(x, y, z) | x = 1, z = 1, y \in R\}$

Solution:

- Let $v_1 = (a_1, 0, 0)$ and $v_2 = (a_2, 0, 0)$ be the two vectors in \mathbb{R}^3 (i) Now, $v_1 + v_2 = (a_1, 0, 0) + (a_2, 0, 0) = (a_1 + a_2, 0, 0)$ Since $a_1 + a_2 \in R$, $v_1 + v_2$ is in R^3 If k is scalar then $kv_1 = k(a_1, 0, 0) = (ka_1, 0, 0)$ Hence, kv_1 is also in R^3 Hence, $W = \{(a, 0, 0) | a \in R\}$ is the suspace of R^3 .
- Let $v_1 = (x_1, y_1, z_1)$ where $x_1^2 + y_1^2 + z_1^2 \le 1$ (ii) We consider the second condition of theorem ie if k is any scalar then $kv_1 = (kx_1, kx_2, kx_3)$ But if k >1 then $(kx_1)^2 + (kx_2)^2 + (kx_3)^2 = k^2(x_1^2 + y_2^2 + z_3^2)$ is

 $not \leq 1$ Hence, V is not closed under multiplication and hence not a

(c) Expand $f(z) = \frac{1}{(z-1)(z-2)}$ in Taylor's and Laurent's series indicating regions of convergence. [8]

Solution:

Let
$$f(z) = \frac{a}{z-1} + \frac{b}{z-3}$$

subspace of R^3 .

$$\therefore \frac{1}{(z-1)(z-2)} = \frac{a(z-2)+b(z-1)}{(z-1)(z-2)}$$

$$\therefore 1 = a(z-2) + b(z-1)$$

Putting
$$z = 1$$
 we get $1 = a(1-2)$ i.e $a = -1$

Putting
$$z = 2$$
 we get $1 = b(2-1)$ ie $b = 1$

$$f(z) = \frac{-1}{z-1} + \frac{1}{z-2}$$

Hence f(x) is not analytic at z = 1 and z = 2

$$f(x)$$
 is analytic when $|z| < 1$, $1 < |z| < 2$, $|z| > 2$

Case 1 : When |z| < 1, clearly |z| < 2 hence

$$f(z) = -\frac{1}{z-1} + \frac{1}{z-2} = \frac{1}{1-z} - \frac{1}{2-z}$$

$$= \frac{1}{1-z} - \frac{1}{2} \cdot \frac{1}{\left[1 - \frac{z}{2}\right]} = (1-z)^{-1} - \frac{1}{2} \left[1 - \frac{z}{2}\right]^{-1}$$

$$= 1 + z + \frac{z^2}{2!} + \dots - \frac{1}{2} \left[1 + \frac{z}{2} + \frac{z^2}{2! \cdot 4} + \dots\right]$$

Case 2; 1 < |z| < 2,

$$f(z) = \frac{1}{z-2} - \frac{1}{z-1}$$

$$= \frac{1}{-2\left(1-\frac{z}{2}\right)} - \frac{1}{z\left(1-\frac{1}{2}\right)}$$

$$= -\frac{1}{2} \left(1 - \frac{z}{2} \right)^{-1} - \frac{1}{z} \left(1 - \frac{1}{z} \right)^{-1}$$

$$= -\frac{1}{2} \left[1 + \frac{z}{2} + \frac{z^2}{2^2} + \frac{z^3}{2^3} + \dots \right] - \frac{1}{z} \left[1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} \dots \right]$$

which is in the form of Laurent's series.

Case :3 |z| > 2

$$f(z) = \frac{1}{z-2} - \frac{1}{z-1}$$

$$= \frac{1}{z(1-\frac{2}{z})} - \frac{1}{z(1-\frac{1}{z})}$$

$$= \frac{1}{z} \left(1 - \frac{2}{z}\right)^{-1} - \frac{1}{z} \left(1 - \frac{1}{z}\right)^{-1}$$

$$= \frac{1}{z} \left[1 + \frac{2}{z} + \frac{2^2}{z^2} + \frac{2^3}{z^3} + \dots \right] - \frac{1}{z} \left(1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \dots \right)$$

which is in the form of laurent's series.

Q4)

(a) Using Rayleigh - Ritz method to solve the boundary value problem.

$$I = \int_0^1 2xy + y^2 - (y')^2 dx$$
; $0 \le x \le 1$ given $y(0) = y(1) = 0$. [6]

Solution:

We have to extremis
$$I = \int_0^1 F(x, y, y') dx$$
(1)

where
$$F = 2xy + y^2 - {y'}^2$$
.....(2)

Now assume the trial solution $\overline{y}(x) = c_0 + c_1 x + c_2 x^2 \dots (3)$

By the data
$$\overline{y}(0) = 0$$
 : $c_0 = 0$; $\overline{y}(1) = 0$: $0 = c_1 + c_2$: $c_2 - c_1$

$$: \overline{y}(x) = c_1 x - c_2 x^2 = c_1 x (1 - x) (4)$$

$$\overline{y}'(x) = c_1 x - 2c_1 x = c_1 (1 - 2x)$$

Putting these values in $I = \int_0^1 (2xy + y^2 - {y'}^2) dx$ we get

$$I = \int_{0}^{1} \{2x[c_{1}x(1-x)] + c_{1}^{2}x^{2}(1-x)^{2} - c_{1}^{2}(1-2x)^{2}\}dx$$

$$= c_{1} \int_{0}^{1} \{2(x^{2}-x^{3}) + c_{1}[x^{2}-2x^{3}+x^{4}-(1-4x+4x^{2})]\}dx$$

$$= c_{1} \int_{0}^{1} \{2(x^{2}-x^{3}) + c_{1}[x^{2}-2x^{3}+x^{4}-(1-4x+4x^{2})]\}dx$$

$$= c_{1} \left[2\left(\frac{x^{3}}{3} - \frac{x^{4}}{4}\right) + c_{1}\left(-x+2x^{2}-x^{3} - \frac{x^{4}}{2} + \frac{x^{5}}{5}\right)\right]_{0}^{1}$$

$$= c_{1} \left[2\left(\frac{1}{3} - \frac{1}{4}\right) + c_{1}\left(-1+2-1 - \frac{1}{2} + \frac{1}{5}\right)\right]$$

$$\therefore I = c_1 \left(\frac{1}{6} - \frac{3}{10} c_1 \right) = \frac{c_1}{6} - \frac{3}{10} c_1^2$$

Its stationary values are given by:

$$\frac{dI}{dc_1} = 0 \quad \therefore \frac{1}{6} - \frac{3}{5}c_1 = 0 \quad \therefore c_1 = \frac{1}{6} \cdot \frac{5}{3} = \frac{5}{18}.$$

Hence from (4) the approximate solution is $\overline{y}(x) = \frac{5}{18} x(1-x)$

(b) If
$$A = \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix}$$
 then prove that $3 \tan A = A \tan 3$. [6]

Solution:

The Characteristic equation of A is

$$\begin{vmatrix} -1 - \lambda & 4 \\ 2 & 1 - \lambda \end{vmatrix} = 0$$

$$\therefore -(1+\lambda)(1-\lambda)-8=0$$

$$\therefore -(1+\lambda)(1-\lambda)-8=0 \qquad \therefore \lambda^2-9=0 \qquad \therefore \lambda=3,-3$$

For $\lambda = 3$, $[A - \lambda_1 I]X = 0$ gives (i)

$$\begin{bmatrix} -4 & 4 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{by } R_2 + \frac{1}{2}R_1 \begin{bmatrix} -4 & 4 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\therefore -4x_1 + 4x_2 = 0 \qquad \therefore x_1 - x_2 = 0$$

Putting $x_2 = t$, we get $x_1 = t$

$$\therefore X_1 = \begin{bmatrix} t \\ t \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

 \therefore The Eigen vector is [1,1].

For $\lambda = -3$, $[A - \lambda_2 I]X = 0$ gives (ii)

$$\begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \text{by} \quad R_2 - R_1 \begin{bmatrix} 2 & 4 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\therefore 2x_1 + 4x_2 = 0 \quad ie \ x_1 + 2x_2 = 0$$

Putting
$$x_2 = -t$$
 and $x_1 = -2x_2 = 2t$

$$\therefore X_2 = \begin{bmatrix} 2t \\ -t \end{bmatrix} = t \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

∴The Eigen vector is [2, -1]

$$\therefore M = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \text{ And } |M| = -3$$

$$M^{-1} = \frac{adj.M}{|M|} = -\frac{1}{3} \begin{bmatrix} -1 & -2 \\ -1 & 1 \end{bmatrix}$$

Now,
$$D = \begin{bmatrix} 3 & 0 \\ 3 & -3 \end{bmatrix}$$

$$f(A) = \tan A, \qquad f(D) = \begin{bmatrix} \tan 3 & 0 \\ 0 & -\tan 3 \end{bmatrix}$$

$$\therefore \tan A = M f(D) M^{-1}$$

$$= \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \tan 3 & 0 \\ 0 & \tan(-3) \end{bmatrix} \left(-\frac{1}{3} \right) \begin{bmatrix} -1 & -2 \\ -1 & 1 \end{bmatrix}$$

$$= -\frac{1}{3} \begin{bmatrix} \tan 3 & -2 \tan 3 \\ \tan 3 & -\tan 3 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ -1 & 1 \end{bmatrix} =$$

$$-\frac{1}{3}\begin{bmatrix} \tan 3 & -4\tan 3 \\ -2\tan 3 & -\tan 3 \end{bmatrix}$$

$$\therefore 3 \tan A = \begin{bmatrix} \tan 3 & 4 \tan 3 \\ 2 \tan 3 & \tan 3 \end{bmatrix} = \tan 3 \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix} = \tan 3 . A$$

$$= A \tan 3.$$

- (c) If sizes of 10,000 items are normally distributed with mean 20cms & standard deviation of 4cms. Find the probability that an item selected at random will have size:
 - (1) Between 18 cms and 23 cms (2) above 26 cms [8]

Solution: (1)

We have SNVZ =
$$\frac{X-M}{\sigma} = \frac{X-20}{4}$$

0.1915

0.2734

When
$$X = 18$$
 $Z = \frac{18-20}{4} = -0.5$

When
$$X = 23$$
 $Z = \frac{23 - 20}{4} = 0.75$

$$P(18 \le x \le 23) = P(-0.5 \le z \le 0.75)_{-}$$

= area between
$$(Z = -0.5 \text{ to } 0.75)$$

$$= 0.1915 + 0.2734 = 0.4649$$

(2) When X = 26

$$Z = \frac{26-20}{4} = \frac{6}{4} = 1.5$$

= area to the right of 1.5

$$= 0.5 - 0.432 = 0.0665$$

Q.5)

(a) Find the orthonormal basis of \mathbb{R}^3 using Gram-Schmidt process where $S=\{(1,0,0),(3,7,-2),(0,4,1)\}$ [6]

Solution:

Step 1:
$$v_1 = u_1 = (1,0,0)$$

Step 2:
$$v_2 = u_2 - proj u_2 - \frac{\langle u_2, v_2 \rangle}{\|v_1^2\|} \cdot v_1$$

Now,
$$\langle u_2, v_1 \rangle = 3 + 0 + 0 = 3$$
 and $||v_1||^2 = 1 + 0 + 0 = 1$

$$v_2 = (3,7,-2) - \frac{3}{1}(1,0,0) = (0,7,-2)$$

Step 3:
$$v_3 = u_3 - proj u_3 - \frac{\langle u_3, v_1 \rangle}{\|v_1^2\|} \cdot v_1 \frac{\langle u_3, v_2 \rangle}{\|v_2^2\|} \cdot v_2$$

Now
$$\langle u_3, v_1 \rangle = 0 + 0 + 0 = 0;$$
 $\langle u_3, v_2 \rangle = 0 + 28 - 2 = 26$

$$\therefore v_3 = (0,4,1) - 0 - \frac{26}{53}(0,7,-2) = \left(0,\frac{30}{53},\frac{105}{53}\right)$$

Hence, $v_1=(1,0,0)$, $v_2=(0,7,-2)$, $v_3=\left(0,\frac{30}{53},\frac{105}{53}\right)$ from the orthogonal basis to R^3 . Now the norms of this vector are

$$\|v_1\| = \sqrt{1+0+0} = 1$$
; $\|v_2\| = \sqrt{0+49+4} = \sqrt{53}$

$$\|\mathbf{v}_3\| = \sqrt{0 + \frac{900}{53^2} + \frac{11025}{53^2}} = \frac{15}{\sqrt{53}}$$

And hence the orthogonal basis for R^3 is

$$q_1 = \frac{v_1}{\|v_1\|} = (1,0,0); \qquad q_2 = \frac{v_2}{\|v_2\|} = \left(0, \frac{0,7}{\sqrt{53}}, -\frac{2}{\sqrt{53}}\right);$$

$$q_3 = \frac{v_3}{\|v_2\|} = \left(0, \frac{2}{\sqrt{53}}, \frac{7}{\sqrt{53}}\right)$$

(b) In a factory, machines A, B & C produce 30%,50% & 20% of the total production of an item. Out of their production 80%, 50% & 10% are defective respectively. An item is chosen at random and found to be defective respectively. What is the probability that it was produced by machine A.?

Solution:

$$P(A) = \frac{30}{100} = 0.3$$

$$P(B) = \frac{50}{100} = 0.5$$

$$P(C) = \frac{20}{100} = 0.2$$

Defective

$$P'(A) = \frac{80}{100} = 0.8$$

$$P'(B) = \frac{50}{100} = 0.5$$

$$P'(C) = \frac{10}{100} = 0.1$$

From Bays Theorem =
$$\frac{P(A).P'(A)}{P(A)(P'A)+P(B)P'(B)+P(C)P'(C)}$$
$$=(0.3\times0.8)/(0.3\times0.8+0.5\times0.5+0.2\times0.1)$$
$$=\frac{5}{17}=0.294$$

(c) Evaluate
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+4)(x^2+9)}$$
 [8]

Solution:

(i) Consider the contour consisting of a semi circle and diameter on the real with the centre at the origin.

(ii) Now,
$$zf(z) = z \cdot \frac{1}{(z^2 + 2^2)(z^2 + 3^2)} \to 0 \text{ as } |z| \to \infty$$

(iii) The poles are given by $z + 2^2 = 0$, $z^2 + 3^2 = 0$ $\therefore z = \pm 2i$, $z = \pm 3i$.

Of these

z = 2i, z = 3i lie in the upper half of the z plane.

(iv) Residue (at
$$z = 2i$$
) = $\lim_{z \to ai} (z - 2i) \cdot \frac{1}{(z - 2i)(z + 2i)(z^2 + 3^2)} = \frac{1}{4i(3 - 2)}$

Similarly, Residue (at
$$z = 3i$$
) = $\lim_{z \to 3i} (z - 3i) \cdot \frac{1}{(z^2 + 2^2)(z - 3i)(z + 3i)}$

$$=\frac{1}{6i} \cdot \frac{1}{2^2-3^2}$$

(v)
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+4)(x^2+9)} = 2\pi i \left[-\frac{1}{4i(3-2)} + \frac{1}{6i} \cdot \frac{1}{2^2-3^2} \right]$$
$$= \frac{\pi}{30}$$

Q.6)

(a) Evaluate
$$\int_{c} \frac{dz}{z^{3}(z+4)}$$
 where C is a circle

i. $|z|=2$

ii. $|z-3|=2$

Solution:

(i)

The poles are given by $z^3(z+4) = 0$

z = 0 is a pole of order 3 and z = -4 is a simple pole.

|z| = 2 is a circle with centre at the origin and radius 2. Hence z = 0 lies inside C and z = -4 lies outside.

Residue at
$$z = 0 = \lim_{z \to 0} \frac{1}{2!} \cdot \frac{d^2}{dz^2} \left[z^3 \cdot \frac{1}{z^3(z+4)} \right]$$

$$= \lim_{z \to 0} \frac{1}{2} \cdot \frac{d^2}{dz^2} \left(\frac{1}{z+4} \right) = \lim_{z \to 0} \frac{1}{2} \cdot \frac{d}{dz} \left(-\frac{1}{z+4} \right)$$

$$= \lim_{z \to 0} \frac{1}{2} \cdot \frac{2}{(z+4)^3} = \frac{1}{64}$$

$$\therefore \int_C \frac{dz}{z^3(z+4)} = 2\pi i \left(\frac{1}{64} \right) = \frac{\pi i}{32}$$

iii.
$$|z-3|=2$$

 \therefore Centre at (3,0) and radius is 2.

As mentioned above $z^3(z+4) = 0$ gives z = 0 and z = -4

So z(3,0) lies inside the c and z(0,-4) lies outside the c Hence we put f(z) is analytic in c

Residue at
$$z = 3 = \lim_{z \to 3} \frac{1}{2!} \cdot \frac{d^2}{dz^2} \left[z^3 \cdot \frac{1}{z^3(z+4)} \right]$$

$$= \lim_{z \to 3} \frac{1}{2} \cdot \frac{d^2}{dz^2} \left(\frac{1}{z+4} \right) = \lim_{z \to 3} \frac{1}{2} \cdot \frac{d}{dz} \left(-\frac{1}{z+4} \right)$$

$$= \lim_{z \to 3} \frac{1}{2} \cdot \frac{2}{(z+4)^3} = \frac{1}{343}$$

$$\therefore \int_C \frac{dz}{z^3(z+4)} = 2\pi i \left(\frac{1}{343}\right) = \frac{2\pi i}{343}$$

- (b) Two unbiased dice are thrown three times, using Binomial distribution find the probabilities that the sum nine would be obtained [6]
 - i. Once
 - ii. Twice

Solution

When two unbiased dice are thrown the chances that sum 9 are obtained are: [(6,3); (3,6); (5,4); (4,5)]

So there are 4 chances to obtain sum 9.

$$p = \frac{4}{36}$$
, $q = 1 - \frac{4}{36}$, $n = 3$

(i) Once

By Binomial Distribution

$$P(X = x) = {}^{n} C_{x} p^{x} q^{n-x}$$

$$P(X = 1) = {}^{3}C_{1} \left(\frac{4}{36}\right)^{1} \left(1 - \frac{4}{36}\right)^{3-2} = {}^{3}C_{1} \left(\frac{4}{36}\right)^{1} \left(\frac{32}{36}\right)^{2} = 0.26$$

(ii) Twice

By Binomial Distribution

$$P(X=x) = {}^{n} C_{x} p^{x} q^{n-x}$$

$$P(X = 1) = {}^{3}C_{2} \left(\frac{4}{36}\right)^{2} \left(1 - \frac{4}{36}\right)^{1} = {}^{3}C_{1} \left(\frac{4}{36}\right)^{2} \left(\frac{32}{36}\right)^{1} = 0.3$$

(c) For the Following data

X	100	110	120	130	140	150	160	170	180	190
Y	45	51	54	61	66	70	74	78	85	89

Find the coefficients of regression $b_{xy} \& b_{yx}$ and the coefficient of correlation (r). [8]

Solution:

Calculation of b_{yx} , b_{xy} etc.

Sr no		Dx			dy	$d_x d_y$	
	X	X - 150	d_x^2	Y	X-70	d_y^2	,0
1	100	-50	2500	45	-25	625	1250
2	110	-40	1 600	51	-19	361	760
3	120	-30	900	54	-16	256	480
4	130	-20	400	61	-9	81	180
5	140	-10	100	66	-4	16	40
6	150	00	000	70	0	0	00
7	160	10	100	74	4	16	40
8	170	20	400	78	8	64	160
9	180	30	900	85	15	225	450
10	190	40	1600	89	19	361	760
N		50		-27			4120
= 10	8500			2005			

$$\overline{X} = A + \sum \frac{dx}{N} = 150 - \frac{50}{10} = 145;$$
 $\overline{Y} = B + \sum \frac{dy}{N} = 70 - \frac{27}{10} = 67.3$

$$b_{yx} = \frac{\sum d_x d_y - \frac{\sum d_x \sum d_y}{N}}{\sum d_x^2 - \frac{\sum (d_x)^2}{N}} = \frac{4120 - \frac{(-50)(-27)}{10}}{8500 - \frac{(-50)^2}{10}} = \frac{4120 - 135}{8500 - 250} = \frac{3985}{8250} = 0.483$$

$$b_{xy} = \frac{\sum d_x d_y - \frac{\sum d_x \sum d_y}{N}}{\sum d_y^2 - \frac{\sum (d_y)^2}{N}} = \frac{4120 - \frac{(-50)(-27)}{10}}{8500 - \frac{(-27)^2}{10}} = \frac{4120 - 135}{2005 - 72.9} = \frac{3985}{1932.1} = 2.06$$

The line of regression of Y on X is

$$Y - \overline{Y} = b_{\gamma \chi} (X - \overline{X})$$

$$\therefore Y - 67.3 = 0.483(X - 145)$$
 $\therefore Y = 0.483X - 2.735$

The coefficient of correlation (r) is

$$r = \sqrt{b_{yx} \times b_{xy}} = \sqrt{0.483 \times 2.06} = 0.9975$$

Hence, $b_{yx} = 0.483$, $b_{xy} = 2.06$, r = 0.9975.