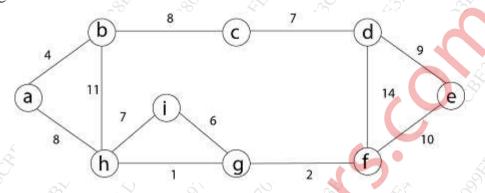

(3 Hours) [Total Marks: 80]

Note:

- 1. Question No: 01 is compulsory.
- 2. Attempt any three questions from the remaining five questions (Q. 2 to Q. 6).
- 3. Figures to the right indicate full marks.
- 4. Answers to sub questions should be answered together.
- Q1 A) List and explain the characteristic properties associated with a problem that can be solved using dynamic programming. Give the algorithm for matrix chain multiplication and state the time complexity of the algorithm.
 - B) What is divide and conquer technique? Write quick sort algorithm and apply it to 45, 32, 11, 56, 77, 90, 41, 62, 99, 22, 88.
- Q2 A) Write down Prim's algorithm and analyze the complexity. Apply Prim's 10 algorithm on the graph given below.



- B) Device backtracking algorithm to find all solutions to the Graph coloring 10 problem and represent the solution space in state space tree.
- Q3 A) What do you understand by NP Hard and NP complete problems also 10 differentiate between NP Hard and NP complete problems.
 - B) What is dynamic programming? How it is applied to the Longest Common

 Subsequence. Perform the Longest Common Subsequence for the following strings –

S1 = "AGGTAB" and S2 = "GXTXAYB".

- Q4 A) Specify the difference between divide and conquer strategy and dynamic programming. How divide and conquer strategy is applied to Binary Search algorithm.
 - B) Find the Minimum Spanning Tree of the following graph using Kruskal's 10 algorithm.

- Q5 A) What do you mean by Branch and Bound technique? Explain LIFO Search, 10 FIFO search and least cost search with examples.
 - B) Compare and contrast Recursive and Non-recursive algorithms. Also analyze 10 and solve the recurrence relation for binary search.
- Q6 A) Knutt-Morris-Pratt algorithm

 B) Asymptotic Notations and their properties

 C) Boyer Moore algorithm

 D) Rabin-Karp algorithm

 05

31424