University of Mumbai

Examination First Half (Summer-2022)

Program: MCA (2 Year Course)

Curriculum Scheme:(R-2021-22)

Examination: 1T00162 / MCA (Sem-II) (R-2021-22) (2 Year Course)

Course Code: 70661 / Elective 2: Design & Analysis of Algorithm

Time: 2 hours 30 minutes

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions ar compulsory and carry equal marks					
1.	Dijkstra's algorithm is used to solve problems?					
Option A:	Network lock					
Option B:	Single pair shortest path					
Option C:	All pair shortest path					
Option D:	Sorting					
•						
2.	Which of the following is used for solving the N Queens Problem?					
Option A:	Greedy Algorithm					
Option B:	Dynamic Programming					
Option C:	Backtracking					
Option D:	Sorting					
3.	Hamiltonian path problem is?					
Option A:	NP Problem					
Option B:	P class Problem					
Option C:	NP Complete Problem					
Option D:	N class problem					
22226						
88400	What is the time complexity of the binary search algorithm?					
Option A:	O(n)					
Option B:	0(1)					
Option C:	O(log2n)					
Option D:	O(n2)					
9 5 5	of an algorithm is the amount of time required for it to execute.					
Option A:	Time complexity					
Option B:	Space complexity					
Option C:	Compiling time					
Option D:	Best case					
320000						

6.	The recursive versions of binary search use a structure.				
Option A:	Branch and bound				
Option B:	Dynamic programming				
Option C:	Divide and conquer				
Option D:	Simple recursive				
7.	If a problem can be broken into subproblems which are reused several times, the				
	problem possesses property.				
Option A:	Overlapping subproblems				
Option B:	Optimal substructure				
Option C:	Memoization				
Option D:	Greedy				
8.	Which of the following problems should be solved using dynamic programming?				
Option A:	Mergesort				
Option B:	Binary search				
Option C:	Longest common subsequence				
Option D:	Quicksort				
9.	Which of the following branch and bound strategy leads to breadth first search?				
Option A:	LIFO branch and bound				
Option B:	FIFO branch and bound				
Option C:	Lowest cost branch and bound				
Option D:	Highest cost branch and bound				
10.	What is a Rabin and Karp Algorithm?				
Option A:	String Matching Algorithm				
Option B:	Shortest Path Algorithm				
Option C:	Minimum spanning tree Algorithm				
Option D:	Approximation Algorithm				

Q2	Solve any Two Questions out of Three	10 marks each					
55 A.S.	Explain MERGE sort using divide and conquer Methodology.						
B	What do you mean by efficiency of a program? Calculate the efficiency of non recursive algorithms.						
C	Solve given 0/1 Knapsack problem using dynamic programming approach. The maximum weight the knapsack can hold is W is 11. There are five items to choose from. Their weights and values are presented in the following table: W1=1 V1=1 W2=2 V2=6 W3=5 V3=18 W4=6 V4=22 W5=7 V5=28						

Q3	Solve any Two Questions out of Three	10 marks each				
A	Explain Naïve string-matching algorithm with an example.					
В	Find Single source shortest path/s from the so algorithm by applying greedy approach.					
С	Define backtracking, explain 4 queen problems u draw the state diagram.	sing backtracking technique and				

Q4.	Solve any Two Questions out of Three 10 marks each							
A	Define NP Hard and NP –complete problem in detail.							
В	What do you mean by Branch and Bound technique? Explain LIFO Search, FIFO search and least cost search with examples.							
	Solve gi	Solve given 15-puzzle problem using branch and bound technique.						
(S)		2	3	400				
			6	8				
2 2 2 2 2	9	10	7	11	0, 8,			
	13	14	15	12				
C	Given arrangement							
		2	3	4				
	5	6	7.5	8				
	9	10	11	12				
	13	14	15					
	Goal	arrangen	nent		J			