Marks : 100

N.B.:				
1.				
2.				
3.				
4.	Symbols have usual meaning unless otherwise stated.	Q		
5.	Use of non-programmable calculator is allowed.	7		
Q1 .	Attempt any two			
	(i) Explain various methods of biasing JFET in active region.	10		
	(ii) Explain the construction and working of an n-channel depletion mode	10		
	MOSFET. Draw and discuss its drain and transfer characteristics.	7		
	(iii) Explain the use of SCR as a half wave rectifier and derive the	10		
	expressions for its average output voltage and current.	10		
	(iv) Explain the construction and working of a UJT. Draw the V-I	10		
	characteristics and explain it.			
	characteristics and explain it.			
$\mathbf{Q2}$	Attempt any two			
	(i) Draw a circuit of an emitter coupled differential amplifier having	10		
	double ended input and single ended output. Using AC analysis derive			
	an expression for voltage gain and input impedance.			
	(ii) In a differential amplifier explain what is meant by common mode	10		
	signal. Using ac analysis derive an expression for common mode gain.			
	(iii) With the help of a neat circuit diagram explain the working of an	10		
	inverting Schmitt trigger using operational amplifier. Derive an			
	expression for its feedback factor and hysteresis. Draw a neat circuit			
	diagram of a non-inverting Schmitt trigger using operational amplifier.			
	(iv) Explain with the help of neat circuit diagram, the principle and			
\Diamond	working of Wien bridge oscillator using operational amplifier. State			
7	the expression for its frequency of oscillation.			
	the expression for its frequency of oscillation.			
Q3	Attempt any two			
	(i) Draw the circuit diagram of voltage controlled oscillator using IC 555.	10		
T	Discuss its working. Derive the expressions for output time period.			
	(ii) Draw the circuit diagram of a stable multivibrator using transistors.	10		
	Explain its working. Sketch the waveforms at both collectors and both			
	base terminals.			
	(iii) What is a bistable multivibrator? Draw the circuit diagram of bistable	10		
	multivibrator using transistors. Discuss its working. What is the			
	relation between input and output frequency of a bistable multivibrator			
	circuit?			
	(iv) Draw the diagram of voltage feedback regulator circuit. Explain its	10		
	working. Derive the expression for power dissipation in pass			
(9)	transistor.			
COM				

Time: 3 hrs.

Q4		Attempt any two	
	(i)	Explain the working of a two – input Transistor Transistor Logic NOR gate.	10
	(ii)	Explain CMOS characteristics in terms of Sinking, Floating Inputs and	10
	(11)	transfer characteristic.	10
	(iii)	Explain Basic Pulse Code Modulation. Explain companding process	10
		used to overcome problems of distortion and noise in the transmission of audio signals.	Z,
	(iv)	Explain benefits of digital communication.	10
	(11)	Explain beliefits of digital communication.	10
Q5.		Attempt any four	
	(i)	The data sheet of a JFET gives the following information:	05
		$I_{DSS} = 3 \text{ mA}$, $V_{GS(off)} = -6 \text{ V}$ and $g_{mo} = 5000 \mu\text{S}$. Determine the	
		transconductance for $V_{GS} = -4V$ and find drain current I_D at this point.	
	(ii)	An ac voltage $v = 240 \sin 314t$ is applied to an SCR half wave rectifier.	05
		If SCR the forward breakdown voltage of 180 V, find the time, during	
		which SCR remains off.	
	(iii)	In a relaxation oscillator circuit using operational amplifier the timing	05
		components are R=4.7 k Ω and C = 0.1 μ f. The feedback to non-	
		inverting terminal is applied by a potential divider with $R_1 = 5 \text{ k}\Omega$ and	
		$R_2 = 5 \text{ k}\Omega$ such that voltage across R_1 is the feedback voltage. Find the	
		period of the output waveform.	
	(iv)	In an active one pole low pass filters using operational amplifier, R =	05
		2.2 kΩ and C = 0.047μ F. What is the cut-off frequency?	
	(v)	Calculate the time period of oscillation of an astable multivibrator	05
		using IC 555 if $R_A = 1500\Omega$, $R_B = 10K\Omega$, $C = 0.47\mu F$ and $V_{CC} = 12V$.	
		Also calculate frequency of oscillation and duty cycle.	
	(vi)	A voltage feedback regulator with fold back current limiting uses	05
		following components: $R_4 = 100\Omega$, $R_5 = 4.7K\Omega$, $R_6 = 10K\Omega$, $V_{BE} =$	
		0.7V and Vo = 7.2V. Calculate shorted load current and maximum	
	8	load current.	
	(vii)	A TTL circuit drives an LED. When the TTL output is high, the LED	05
		is dark. When the TTL output is low, the LED lights up. If the LED	
F		voltage drop is 1.75 V, Calculate LED current for a low TTL output.	
	OF		
		S A T A	
		₹ 410 Ω	
	ON.		
	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	(viii)	The input voltage of a compander with a maximum voltage range of	05

and a μ of 255 is 0.25V. What are the output voltage and gain?