Paper / Subject Code: 24241 / Physics: Atomic & Molecular Physics

TY. BSC Sem- 7 23-24 unin exem.

1-11-23

(3 Hours)

N.B.: (1) **All** questions are **compulsory**.

(2) Figures to the right indicate full marks.(3) Draw neat diagrams wherever necessary.

(4) Symbols have usual meaning unless otherwise stated.

[Total Marks: 100]

	(5)	Use of non-programmable calculator is allowed.	
Q1		Attempt any two:	
	(i)	Beginning with the time independent Schrodinger's equation for one electron atom, obtain three independent equations in spherical polar coordinates.	10
	(ii)	Discuss quantization of orbital angular momentum with respect to magnitude and direction.	10
	(iii)	Explain Radial probability density of an electron in hydrogen atom model using suitable graphs. Also discuss Azimuthal and Zenith probability densities.	10
	(iv)	Describe the experimental setup of Stern Gerlach's experiment and explain how it was able to prove the existence of intrinsic spin of electron.	10
Q2		Attempt any two:	
	(i)	Show quantum mechanically that an electron undergoing transition from higher energy level E_m to a lower energy level E_n emits a radiation of frequency	10
		$v = \frac{E_m - E_n}{h}$. Also state selection rules for the allowed transition.	
	(ii)	Explain in detail, the experimental set up to observe Zeeman effect and comment on observed Zeeman components.	10
	(iii)	Explain on the basis of vector atom model, simultaneous quantization of L, S and J vectors of one electron atom.	10
	(iv)	Explain with classical theory Normal Zeeman effect.	10
Q3		Attempt any two:	
	(i)	Write the expression for vibration-rotation energy levels of a rigid diatomic molecule. Discuss features of P- branch and R-branch using suitable energy level diagram	10
	(ii)	Write an expression for rotational energy of a single diatomic molecule. Explain in detail how the energy levels get modified if the effect of bond elongation is taken into consideration. Draw appropriate energy level diagram.	10
	(iii)		10
	(iv)	State Franck-Condon Principle. Using the principle, explain the electronic spectra of diatomic molecule.	10

Paper / Subject Code: 24241 / Physics: Atomic & Molecular Physics

Q4	Attempt any two:			
(i)	Define Raman shift and list the observation			
('')	sinit and list the observation	ns related to Raman	effect	
(ii)	Dipidin tile Raman activity of	Saul 1	-1100t.	10
(:::)	of vibrations	ecules by considering	g various mode	es 10
(iii)	Discuss pure vibrational Raman spectrum	Alex - 1		
	 Discuss pure vibrational Raman spectrum lines that are observed 	. Also explain stoke	s and antistoke	s 10
(iv)				
	Explain the parts of an ESR spectrometer ar	nd discuss its workin	O .	
Q5	Attempt any four			10
(i)	Write Lz using spherical polor		6_0	
(2.1)	Write Lz using spherical polar co-ordinates and	obtain its eigen values		20
(ii)	A Deam of alactus			05
	A beam of electrons enters a uniform magnetic the energy difference between electrons variable to the applied field. Given: h= 6.63 x 10 ⁻³⁴ I.	whose spin	ide 1.2 T, Find	05
	parallel to the applied field.	vilose spins are par	rallel and anti	0.5
	Js, $c = 3 \times 10^8 \text{m/s}, e =$	1.6 x 10-19 c m = 0	11 1031	
(iii)	Spectral lines from 3P-3S transition in s components of wavelength 5890AU and 589 Estimate the magnetic of the 1890AU and 589		11 x 10 Kg	
	components of wavelength 5890ALL and 580	odium atom splits	up into two	05
	components of wavelength 5890AU and 589 Estimate the magnetic field experienced by the to its orbital motion.	e spinning of	oit interaction.	03
	Given: $h = 6.63 \times 10^{-34} \text{ r}$	raming election in	n 3P state due	
(iv)	Given: $h = 6.63 \times 10^{-34} \text{ Js}$, $c = 3 \times 10^8 \text{m/s}$, $e = 1$ Define Lande's 'g' factor and find its value for	$1.6 \times 10^{-19} \text{C}$, $m = 9.1$	1 v 10-312	
				0.5
(A) I	In a CO molecule, the bond length is 1.13 A atoms are 1.99 x 10 ⁻²⁶ Kg and 2.66 x 10 ⁻²⁶			05
a	atoms are 1.99 x 10 ⁻²⁶ Kg and 2.66 x 10 ⁻²⁶ moment of inertia of the CO molecule and t	AU, and the masses	of C and O	05
e	moment of inertia of the CO molecule and the complex tensor $t = 6.63 \times 10^{-34}$	he energy of the	Calculate the	00
	Given: $h = 6.63 \times 10^{-34} \text{ Js}$	onergy of the fir	st rotational	
(vi) St	State the principle involved in microway			
(1)	State the principle involved in microwave s liagram for Microwave Spectrometer.	pectroscopy. Also	draw block	05
(vii) A	Stokes line of			00
rac	stokes line of wavelength 5540 AU was obser adiation of wavelength 5460AU was scattered	ved in a Raman spec	25.000	
Ra	adiation of wavelength 5540 AU was obser aman shift and wavelength of corresponding A	d by a medium. Ca	lculate the	05
of	aman shift and wavelength 5460AU was scattered aman shift and wavelength of corresponding A light = 3×10^8 m/s	inti-Stokes line. Giv	en :- speed	
(viii) Cal	alculate the resonance frequency in an NMR sp ld of 2.3487 tesla is applied to a sample of hydrogen is 5.595			
field	ld of 2.3487 tesla is applied to a same	ectrometer experime	ent when a	0.0
			's g-factor	05
GIV	ven: $-h = 6.62 \times 10^{-34} \text{ Js}$, $\mu_N = 5.05 \times 10^{-27} \text{ JT}^{-1}$	1		

10370

* X