Duration 2 $\frac{1}{2}$ Hrs Marks: 75

- N.B. : (1) All questions are compulsory.
 - (2) Figures to the right indicate marks.
- 1. (a) Attempt ANY ONE from the following:
 - (i) Let $f:(X,d) \longrightarrow (Y,d')$ be a function. Show that f is continuous at $p \in X$ if and only if for each sequence (x_n) in X converging to p, the sequence $(f(x_n))$ converges to f(p) in Y.
 - (ii) Let (X,d) and (Y,d') be metric spaces. If (X,d) is a compact metric space and $f: X \longrightarrow Y$ is a continuous function, then show that f(X) is a compact subset of Y.
 - (b) Attempt ANY TWO from the following:
 - (i) Let (X, d) be a metric space and $f, g: (X, d) \longrightarrow \mathbb{R}$ (usual distance) be continuous on X. Show that $f + g: (X, d) \longrightarrow \mathbb{R}$ is also continuous on X. Is the converse true?

(12)

(8)

(12)

(8)

- (ii) Let $f, g : \mathbb{R} \to \mathbb{R}$ be continuous functions (with respect to usual distance). Let $h: (\mathbb{R}^2, d) \to (\mathbb{R}^2, d)$ be defined by h(x, y) = (f(x), g(y)). Show that h is continuous on (\mathbb{R}^2, d) where d is Euclidean distance.
- (iii) Prove or disprove: If $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ are uniformly continuous on a nonempty set $A \subseteq \mathbb{R}$ then the product function $f \cdot g$ is uniformly continuous on A.
- 2. (a) Attempt ANY ONE from the following:
 - (i) Define separated sets in a metric space, disconnected metric space. Prove that a metric space (X, d) is disconnected if and only if there exists a nonempty proper subset of X which is both open and closed in X.
 - (ii) Define connected subset of a metric space. Prove that if a subset E of \mathbb{R} is connected then it is an interval. (Distance in \mathbb{R} being usual). Is \mathbb{Q} connected? Justify.
 - (b) Attempt ANY TWO from the following:
 - (i) Show that the set $S = \{(x, y) \in \mathbb{R}^2 : 0 < x < 2, 1 < y < 5\}$ is a convex set in (\mathbb{R}^2, d) where d is the Euclidean distance.
 - (ii) If (X, d) be a connected metric space and $f: X \longrightarrow \mathbb{Z}$ (distance in \mathbb{Z} being usual distance) is a continuous function then prove that f is a constant function.
 - (iii) Let (X, d) be a metric space and A, B be connected subsets of X such that $A \cap B \neq \emptyset$. Prove that $A \cup B$ is a connected set.
- 3. (a) Attempt ANY ONE from the following:
 - (i) Let $\{f_n\}$ be a sequence of real valued R-integrable functions defined on [a,b] such that $f_n \to f$ uniformly on [a,b]. Prove that f is R- integrable on [a,b] and $\lim_{n \to \infty} \int_a^b f_n(t) \ dt = \int_a^b \lim_{n \to \infty} f_n(t) \ dt$.

24739

- (ii) Prove that if the power series $\sum_{n=0}^{\infty} c_n x^n$ converges at $x_1 \in \mathbb{R}, x_1 \neq 0$ and diverges at $x_2 \in \mathbb{R}$ then the power series $\sum_{n=0}^{\infty} |c_n x^n|$ converges for all $x \in \mathbb{R}$ with $|x| < |x_1|$ and diverges for all $x \in \mathbb{R}$ with $|x| > |x_2|$.
- (b) Attempt ANY TWO from the following:
 - (i) State and prove Cauchy Criterion for Uniform Convergence of a Series $\sum_{n=0}^{\infty} f_n$ of real valued functions defined on a subset S of \mathbb{R} .
 - (ii) Show that $\sum_{n=1}^{\infty} e^{-nx} x^n$ is uniformly convergent on [0, A], A > 0.
 - (iii) Let $f_n: [-1,1] \longrightarrow \mathbb{R}$ with $f_n(x) = \sqrt{x^2 + \frac{1}{n^2}}$. Given that $f_n \longrightarrow f$ uniformly on [-1,1] where f(x) = |x| for $x \in [-1,1]$. Find $\lim_{n \longrightarrow \infty} \int_{-1}^{1} f_n(x) \ dx$.

(15)

- 4. Attempt ANY THREE from the following:
 - (a) Let (X, d) and (Y, d') be metric spaces. If $f: X \to Y$ is uniformly continuous on X and (x_n) is a Cauchy sequence in X, then show that the sequence $(f(x_n))$ is Cauchy in Y.
 - (b) Define a contraction map. $T: \left[0, \frac{1}{3}\right] \longrightarrow \left[0, \frac{1}{3}\right]$ is defined as $T(x) = x^2$, show that T is a contraction map on $\left[0, \frac{1}{3}\right]$.
 - (c) Let (X, d) be a metric space. If A is a finite subset of X having more than one element, show that A is disconnected.
 - (d) Prove or disprove: The subset $\{(x,y) \in \mathbb{R}^2 : y \neq 0\}$ of (\mathbb{R}^2,d) , d being Euclidean distance, is connected.
 - (e) Find the set of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n}$.
 - (f) For each $n \in \mathbb{N}$, let $f_n : [0,1] \to \mathbb{R}$ be defined by $f_n(x) = nxe^{-nx}$. Show that $\{f_n\}$ converges pointwise but not uniformly on [0,1].
