Duration 2 ½Hrs

NEW COURSE

Marks: 75

- N.B. : (1) All questions are compulsory
 - (2) Figures to the right indicate marks.
- 1. (a) Attempt any One from the following:

(8)

- (i) Define an open ball B(x,r) in a metric space (X,d) and show that every open ball is an open set. Also give an example to show that the converse need not be true.
- (ii) Show that for a subset F of a metric space (X, d), the following statements are equivalent:
 - (I) F is closed
 - (II) F contains all its limit points.
- (b) Attempt any Two from the following:

(12)

- (i) State and prove Hausdorff property in a metric space (X, d).
- (ii) Prove that (\mathbb{N}, d) and (\mathbb{N}, d_1) where d is the usual distance (induced from \mathbb{R}) and d_1 is the discrete metric in N, are equivalent metric spaces.
- (iii) Let $X = \mathbb{R}^2$ and d be the Euclidean metric on X. Show that $A = \{(x_1, x_2) \in \mathbb{R}^2 : 0 < 0 \}$ $x_1 < 1, 0 < x_2 < 1$ is open in X.
- 2. (a) Attempt any One from the following:

(8)

- (i) If in a metric space (X,d), for every decreasing sequence $\{F_n\}$ of non-empty closed sets with diam $F_n \longrightarrow 0$, we have F_n is a singleton set then prove that (X,d) is complete.
- (ii) Let (X, d) be a metric space and A be a subset of X. Show that $p \in X$ is a limit point of A if and only if there is a sequence of distinct points in A converging to p.
- Attempt any Two from the following:

(12)

- Show that a sequence (x_n) in (\mathbb{R}^2, d) (where d is Euclidean distance) converges to a point $p = (p_1, p_2) \in \mathbb{R}^2$ if and only if $(x_n^i) \longrightarrow p_i$ for $1 \le i \le 2$, in \mathbb{R} with respect to the usual distance, where $x_n = (x_n^1, x_n^2)$.
- (ii) Let (X, d) be a metric space and (x_n) be a Cauchy sequence in X. If (x_n) has a convergent subsequence then prove that sequence (x_n) itself is convergent.
- in) Check whether Cantor's Theorem is applicable in each of the following examples and find $\bigcap_{n\in\mathbb{N}}F_n$ in each case, where (F_n) is a sequence of subsets of \mathbb{R} and the distance d is usual distance from R, in each examples:
 - (i) $X = [-1, 1], F_n = [-\frac{1}{n}, \frac{1}{n}]$
 - (ii) $X = (0, 1), E_n = (0, \frac{1}{n+1}]$
- Attempt any One from the following:

(8)

- (i) For a nonempty subset A of metric space (\mathbb{R}, d) , where d is usual metric, prove that if A is closed and bounded then it satisfies Hein-Borel property.
- If C is a non-empty collection of compact subsets of a metric space (X,d) then prove that $\bigcap K$ is a compact subset of X. Further, if C is finite then show that $\bigcup K$ is a compact subset of

(b) Attempt any Two from the following:

(12)

- (i) Prove or disprove: $A = \{(x,y) \in \mathbb{R}^2 : |x| + |y| \le 1\}$ is a compact subset of (\mathbb{R}^2, d) , where d is Euclidean distance.
- (ii) If A, B are compact subsets of \mathbb{R} with respect to usual distance then prove that A + B is a compact subset of \mathbb{R} with usual metric.
- (iii) Prove that the open cover $\{B(0,n)\}_{n\in\mathbb{N}}$ of a metric space $(C[a,b],\|\cdot\|_{\infty})$, where $\|f\|_{\infty} = \sup\{|f(t)|: t\in[a,b]\}$, has no finite subcover. (0 being the constant zero function)
- 4. Attempt any Three from the following:

(15)

- (a) Define an open set in a metric space (X, d). Let $A \subseteq X$. Show that A is open if and only if $A = A^{\circ}$ (Interior of A).
- (b) Let (X, d) be a metric space. If A is any finite non-empty subset of X then show that $X \setminus A$ is an open set.
- (c) Show that the function $f: \mathbb{R} \to \mathbb{R}$, defined by $f(x) = (x-a)^2(x-b)^2 + x$, takes the value $\frac{a+b}{2}$ for some value of $x \in \mathbb{R}$. (distance in \mathbb{R} being usual)
- (d) Prove that in a discrete metric space every Cauchy sequence is eventually constant. Hence deduce that a discrete metric space is complete.
- (e) Let (X,d) be a metric space and $(x_n) \in X$ such that $(x_n) \longrightarrow p$ in X. Show that $K = \{x_n : n \in \mathbb{N}\} \cup \{p\}$ is a compact subset of X using the definition.
- (f) Show that the set $(-\sqrt{2}, \sqrt{2}) \cap \mathbb{Q}$ is a closed and bounded subset in \mathbb{Q} with usual metric, but not compact.