17 BSC Sent 23-20

[Time: 3 Hours]

[Total marks:100]

N.B.: (1) All questions are compulsory.

- (2) Figures to the right indicate full marks.
- (3) Use of logarithmic table/non-programmable calculator is allowed
- 1. Attempt any four of the following:
 - A. Discuss the following symmetry elements with one example each

 i) Axis of symmetry
 ii) Plane of symmetry

 B. Discuss the point group assign to following molecules;

 i) BCl₃
 ii) NH₃
 - C. Draw molecular orbital diagram for NO molecule. Discuss its bond order and magnetic behaviour.
 - D. What is SALCs of atomic orbitals? Explain the formation of 5 molecular orbitals in Beryllium dihydride molecule.
 - E. Write a note on structure of H₃⁺ ion on the basis of molecular orbital theory
 - F. Discuss the correlation between bond angles and molecular orbitals with suitable example.
- 2. Attempt any four of the following:
 - A. Explain following terms:
 a) lattice point
 b) Unit cell
 5
 - B. Prove that number of atoms per unit cell (n) for,
 a) simple cubic lattice (sc) is 01
 - b) face centered cubic lattice (fce) is 04
 - C. Show that the atomic packing factor for bcc lattice is 68%.
 - D. Explain Schottky defect by giving a suitable example 5
 - E. What are superconductors? Explain concept of superconductivity with the help of suitable example.
 - F. Explain the following terms, 5
 - a) Meissner effect
 - b) conventional superconductor

36688

Page 1 of 4

DA58407F2BE9AED491DD657F630031DD

Paper / Subject Code: 24227 / Chemistry: Inorganic Chemistry(6 Units)

3.	Attem	pt any four of the following:	
	A.	What are inner transition elements? Give the names and observed electronic configuration of lanthanide elements.	05
	В.	Write a short note on ability of lanthanide elements to form complexes.	05=
	C.	Explain Ion Exchange Equilibria. Discuss the significance of complexing agent for separation of lanthanides by Ion Exchange Method.	05
	D.	i) Why Cerium and Europium show +4 and +2 oxidation state respectively?	02
		ii) Explain the binodal curve of magnetic moments of lanthanide ions.	03
	E.	Discuss spectral properties of lanthanides.	05
	F.	i) Explain, why the post-lanthanide elements have high densities?	03
		ii) Explain any two important mineral of lanthanides.	02
4.	Attem	pt any four of the following:	
	Α.	Explain ionizing and non-ionizing solvents with suitable examples.	5
	В.	i. What are non-aqueous solvents? give two examples.	2
		ii. write any three balance equations of liquid Dinitrogen tetroxide (Liq. N ₂ O ₃) with metals	3
	C.	Explain in detail allotropic forms of sulphur atom in group-16 elements.	5
	D.	Discuss the use of Platinised asbestos and vanadium pentoxide in the oxidation of sulphur dioxide to sulphur trioxide.	5
	E.	Explain anomalous behaviour of fluorine.	5
	F.	On the basis of VSEPR theory, discuss the bonding and structure of XY ₅ type interhalogen compound with any one suitable example	5

36688

Page 2 of 4

DA58407F2BE9AED491DD657F630031DD

5.

36688

	Ans	swer the following:
A.		Select the correct option and complete the following statements: 5
		(any five)
	a.	of symmetry is denoted by symbol i
		a) Centre b) Axis c) Plane d) Angle
	b.	The axis with theorder of symmetry operations is called
		principal axis.
		a) lesser b) moderate c) lowest d) highest
	c.	The rotation axis Cn for ammonia molecule isa) C ₄ b) C ₃ c) C ₂ d) C ₀
	d.	The molecules having two atoms of the same elements are known as
		diatomic.
		a) heteronuclear b) homonuclear c) thermonuclear d) isonuclear Atomic orbitals are regarded as
	e.	a) monocentric b) polycentric c) multicentric d) dientric
	f.	Molecular orbitals are denoted by wave function
		a) ψ b) α c) σ d) €
	g.	Molecular orbitals with higher energy give rise to molecular
	A	orbitals.
		a) non-bonding b) antibonding c) bonding d) cross
	h.	In triangular ion, triply degenerate orbitals are labelled as
		a) a b) e c) t d) f
B.		State whether true or false: (any five) 5
		The temperature at which superconductivity occurs is called critical
	a.	temperature.
	b.	Atomic packing factor of simple cubic lattice is 74%
	c.	Volume of all the atoms in face centered cubic cell (fcc) is 2 x 4/3 πr^3
	d.	At ordinary temperature a metal has a measurable resistivity but as the temperature decreases resistivity decreases and conductivity increases
	e.	The presence of Frenkel defect in a crystal does not change the density
		of crystal
	f.	Magnetic permeability of Superconductor is one.
	1.	
	g.	Bravais shows that there can only be 14 different ways in which similar point can be arranged in three-dimensional space
The		

Page 3 of 4

DA58407F2BE9AED491DD657F630031DD

Fill in the blanks with correct alternatives given in the bracket: C. (hydrogenation, 4fⁿ⁺¹ 5d⁰ 6s², Lu³⁺, ultra-violet, Gd³⁺, spin and orbital moment, misch, group 3 and 6th period) Magnetic properties of lanthanides are due to contribution of -Cerium glass is used in glare reducing spectacles due to absorption of ------ radiation. ----- is colourless lanthanide ion. ----- is diamagnetic lanthanide ion. Lanthanide oxides are used as catalyst in ---------- metal is used as a good scavenger of oxygen and sulphur in several metallurgical operations. Position of lanthanide elements in periodic table is The observed electronic configuration of lanthanide elements may be represented as . 5 (Any five) D. Match the column: Column B Column A Tetrahedral geometry Water ii. $[He]2s^22p'$ Dipole moment Platinised asbestos iii. m+nDebye Electronic configuration of iv. Oxygen atom $[Ar]5s^24p^5$ Contact Process Catalyst used in manufacture Perchlorate ion of H₂SO₄ Nonaqueous solvent Steric number of ABmEn molecule Universal solvent viii. Manufacturing of H₂SO₄ Page 4 of 4

DA58407F2BE9AED491DD657F630031DD

36688