		Duration:[3 Ho	ours]	[Total Marks: 100]	
N.B.	1)	All questions are compulsory.	Or to the		
	2)	Figures to the right indicate full marks			
1. Choose correct alternative in each of the following:					
		Let G be a connected graph. If G is neither complete nor an odd cycle then vertex chromatic			
		where of G is			
	(a)	\leq Max degree of G .	(b) = Maximum degree	$\operatorname{ree} \text{ of } G.$	
	, ,	= Max degree of $G+1$	(d) None of these		
ii	. Ed	Edge Chromatic number of $K_{1,n}, n \geq 2$ is			
	(a)	0,100	(b) n		
	(c)	n+1	(d) None of the above		
iii	. Th	The relation between vertex connectivity κ , edge connectivity κ' and minimum degree δ is			
	(a)	$\kappa = \kappa' = \delta$	(b) $\kappa < \kappa' < \delta$		
	(c)	$ \kappa \le \kappa' \le \delta $	(d) None of these	A STATE OF	
iv	. If (If $G(p,q)$ be planar graph, then sum of degrees of regions is equal to			
	` '	2p	(b) $2q$	2000 0 10 10 10 10 10 10 10 10 10 10 10 1	
	(c)	p+q	(d) None of these	7. O. C.	
V		Let G be a connected planar graph with q edges, p vertices and f regions then			
		2q > 3f	(b) $2q \ge 3f$		
	` /	2q < 3f	(d) $2q \le 3f$	<u> </u>	
vi		If f is a flow in a network N and S be any subset of nodes, then (S, \overline{S}) is a cut if			
		$x \in S, y \text{ is not in } \overline{S}$	(b) x is not in $S, y \in \overline{S}$	$\equiv S$	
		x is not in S , y is not in S	(d) $x \in S, y \in \overline{S}$		
vii		he polynomial $c + 3x + x^2$ is a rook pol	5 19 10 2 N	oard then	
	(2) (2)	c=0	(b) $c = 1$		
	1,00,7	c>1	(d) c is even		
viii. The function e^{-x} is the generating function of the sequence					
6		$a_n = \frac{1}{n!}$	$(b) a_n = \frac{-1}{n!}$		
		$a_n = \frac{(-1)^n}{n!}$	$(d) a_n = (-1)^n$		
ix		The number of different system of distinct representatives of the family $A_1 = \{1, 2\}, A_2 = \{0, 2\}, A_3 = \{1, 2\}, A_4 = \{1, 2\}, A_5 = \{1, 2$			
		3 , $A_3 = \{3, 4\}$, $A_4 = \{4, 5\}$, $A_5 = \{5, 1\}$			
, 6, 6, 5 , 6, 5, 5	(a) (c)		(b) 2 (d) 5		
				.•	
X	x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A matching M in G is a maximum matching if and only if G contains			
XXX	0 641	no M -augmenting path. no M -alternating path.	(b) M-augmenting pa (d) None of these	aun.	
69°00	7100	no m-anormaning panii.	(a) None of these	TURN OVER	
11 625	av Tr	A = 70			

756BE8D075687CC3F920467E94A76647

1 of 3

65659

- 2. (a) Attempt any **ONE** question from the following:
 - i. If G is k- critical graph then show that
 - I) G is connected
 - II) Every vertex v of graph G has at least k-1 degree.
 - III) Graph G cannot be partitioned into subgraphs.
 - ii. Prove that a graph G with $p \geq 2$ is 2-connected if and only if any two vertices are connected by at least two internally disjoint paths.
 - (b) Attempt any **TWO** questions from the following:
 - i. Define vertex chromatic number $\chi(G)$. Let G be the graph with n vertices. Show that $\chi(G) \geq \frac{n}{n-\delta(G)}$ where $\chi(G)$ denotes vertex chromatic number of G and $\delta(G)$ denotes minimum degree of G.
 - ii. If G is a cycle on n vertices then show that $\pi_k(G) = (k-1)^n + (-1)^n (k-1)$.
 - iii. If G is cubic graph, then show that $\kappa(G) = \kappa'(G)$ where $\kappa(G)$ denote the vertex connectivity and $\kappa'(G)$ denotes the edge connectivity of a graph G.
 - iv. If G is a bipartite graph, then show that $\chi'(G) = \Delta(G)$, where $\chi(G)$ represents vertex chromatic number of a graph G and $\Delta(G)$ denotes the maximum degree of G.
- 3. (a) Attempt any **ONE** question from the following:
 - i. State and prove Euler's formula for planar graphs. Hence or otherwise prove that the minimum degree of a simple planar graph is ≤ 5 .
 - ii. State and prove Max Flow Min Cut Theorem.
 - (b) Attempt any **TWO** questions from the following:
 - i. Define dual graph G^* of G. Show that edges in a plane graph G form a cycle in G if and only if the corresponding dual edges form a bond in G^* .
 - ii. Let f be a flow in a network N and P be any f-incrementing path then show that there exist a revised flow f' such that $val(f') = val(f) + \epsilon(p)$
 - iii. For a plane graph G, prove that G is bipartite if and only if every face of G has even length.
 - iv. Show that there is at least one face of every polyhedron is bounded by an n-cycle for some n = 3, 4 or 5.
- 4. (a) Attempt any **ONE** question from the following:
 - i. State and prove Hall's (Marriage) Theorem for a System of Distinct Representatives.
 - ii. Derive the recurrence relation for number of ways of dividing a n + 1-sided convex polygon into triangular regions by inserting diagonals that do not intersect in the interior and prove using generating function that the solution to this recurrence relation is a Catalan Number.

TURN OVER

(8)

(12)

(8)

(12)

(8)

65659 2 of 3

- (b) Attempt any **TWO** questions from the following:
 - i. Let B denotes a forbidden chess board in which a special square * has been identified and let D denote the board obtained from the original board by deleting the row and column containing the special square and E denote the board obtained from the original board where only the special square * is removed from the board, then prove that R(x, B) = xR(x, D) + R(x, E).

(12)

(20)

- ii. Show that a matching M in G is a maximum matching if and only if G contains no M-augmenting path.
- iii. Determine the generating function for the number of n-combinations of apples, bananas, oranges, and pears, where, in each n-combination, the number of apples is even, the number of bananas is odd, the number of oranges is between 0 and 4, and there is at least one pear.
- iv. Solve the recurrence relation $a_n = 3a_{n-1} + 2$, with $a_0 = 1$ using generating function.
- 5. Attempt any **FOUR** questions from the following:
 - (a) Show that vertex connectivity of a graph G is always less or equal to the edge connectivity of G.
 - (b) Show that if G_1, G_2, \ldots, G_n are n components of graph G then $\pi_k(G) = \prod_{i=1}^n \pi_k(G_i)$.
 - (c) Show that every planar graph is 6-vertex colorable.
 - (d) If f is any flow and K be any cut in a network N with val(f) = cap(K) then show that f is maximum flow and K is minimum cut.
 - (e) Show that the number of nonnegative integer solutions of the equation $x_1 + x_2 + \cdots + x_k = r$ is given by $\begin{pmatrix} r+k-1 \\ r \end{pmatrix}$.
 - (f) Let $A = (A_1, A_2, A_3, A_4, A_5, A_6)$, where $A_1 = \{1, 2, 3\}, A_2 = \{1, 2, 3, 4, 5\}, A_3 = \{1, 2\}, A_4 = \{2, 3\}, A_5 = \{1\}, A_6 = \{1, 3, 5\}$. Does family A have an System of Distinct Representative? If not, what is the largest number of sets in the family with an System of Distinct Representative?

65659 3 of 3