		Duration:[3 Hours]		[Total Marks: 100]	
N.B.	1) 2)	All questions are compulsory. Figures to the right indicate full	l marks.		
1. Cho	oose	correct alternative in each of the	e following:		
i.	Let	c be a proper coloring of $G = (V)$	(T, E) using t colors, then the	ne coloring partitions V into	
		t-1 parts	(b) t parts		
	(c)	one part	(d) 2 parts		
ii.	If g	If graph G is k-critical then			
	` '	G is acyclic	(b) G is disconn		
	` ,	G is connected	(d) all of these.		
111.		Which of the following can be a chromatic polynomial? (a) $L^4 = 2L^3 + 2L^2 - L$ (b) $2L^3 = 4L^2 + L$			
	(a)	$k^4 - 3k^3 + 3k^2 - k$ $k^4 - 5k^3 + 7k^2 - 6k + 3$	(b) $3k^3 - 4k^2 + (d) k^3 + k^2 + k$		
iv	. ,	is planar if			
17.			(c) n = 5 (d)	None of these	
v.	A	A connected planar graph has an equal number of vertices and faces. If there are 20 edges in this graph, the number of vertices must be:			
	(a)		(b) 10	\$\frac{1}{2}	
	(c)	20	(d) 11		
vi.	the $f'(a)$ of (a)	If f is a flow in a network N and P be any f -incrementing path with tolerance $\epsilon(P) > 0$, then define a new flow f' as follows: $f'(a) = f(a) + \epsilon(P)$ for an forward arc $a \in P$, $f'(a) = f(a)$ for an backward arc $a \in P$ and $f(a) = f(a)$ for other arcs a of N . Then value of f' equals to (a) $valf + \epsilon(P)$ (b) $valf - \epsilon(P)$ (c) same as $valf$			
vii.	Let	Let $R(x, B)$ denotes the rook polynomial for the board B of darkened squares consisting of m rows and n columns, then			
	(a) (b) (c)	 (a) constant term is 1 (b) coefficient of x^k is number of ways of placing k non capturing rooks (c) r_k(B) = 0 if k > min{m, n} (d) all of the above. 			
viii.	Th	The number of ways to climb a staircase with 12 steps taking 1 or 2 steps at a time is			
35.00	(a)	987	(b) 610		
	(c)		(d) 233		
0 9					
				[TURN OVER	

1 of 3

65658

- ix. The number of different system of distinct representatives for the family $A_1 = \{2, 3, 4\}, A_2 = \{2, 3, 4\}, A_3 = \{2, 3, 4\}, A_4 = \{2, 3, 4\}, A_5 = \{2, 3$ $\{1,3,4\}, A_3 = \{1,2,4\}, A_4 = \{1,2,3\}$ is (b) 3! (d) None of these (a) 4! (c) 9 x. If M is maximum matching then which one of the following statement is true? (a) There does not exists any matching M' such that |M'| < |M|(b) There does not exists any matching M' such that |M'| > |M|(c) There exists any matching M' such that |M'| > |M|(d) None of these 2. (a) Attempt any **ONE** question from the following: i. For a simple graph G of order p and size q, prove that $\pi_k(G)$, the chromatic polynomial of the graph G, is monic polynomial of degree p in k with integer coefficients and constant term zero. Further prove that its coefficients are alternate in sign and the coefficient of k^{p-1} is -q. ii. For any simple graph G, prove that $\kappa(G) \leq \kappa'(G) \leq \delta(G)$ where $\kappa(G)$ denote the vertex connectivity and $\kappa'(G)$ denotes the edge connectivity and $\delta(G)$ denotes the minimum degree of a graph G. (b) Attempt any **TWO** questions from the following: (12)i. State Vizing theorem for edge coloring of graphs. Show that $\chi'(G) \geq \Delta(G)$ where $\chi'(G)$ denotes edge chromatic number and $\Delta(G)$ denotes the maximum degree of G.
 - Give an example of the graph for which $\chi'(G) = \Delta(G)$. ii. Let $\pi_k(G)$ denote the chromatic polynomial of the graph G. If G is simple graph then prove that $\pi_k(G) = \pi_k(G - e) - \pi_k(G \cdot e)$ where e is an edge of G.
 - iii. If G is a graph with p vertices and \overline{G} is its complement of G, then show that $\chi(G) + \chi(\overline{G}) \leq p+1$, where $\chi(G)$ is the vertex chromatic number of graph G.
 - iv. If G is a (p,q) graph, then prove that $\chi(G) \geq \frac{p^2}{p^2-2q}$ where $\chi(G)$ denotes the vertex chromatic number of G.
- (a) Attempt any **ONE** question from the following:

(8)

(8)

- i. Show that every planar graph is 5 vertex colorable.
- ii. State and prove Max Flow Min Cut Theorem.
- (b) Attempt any **TWO** questions from the following: (12)
 - i. Show that there is at least one face of every polyhedron is bounded by an n-cycle for some n=3,4 or 5.
 - ii. Show that the edge e is a loop in G if and only if e^* is a bridge in G^* where G^* is dual of graph G.

TURN OVER

65658 2 of 3

- iii. Define a value of flow and capacity of cut in network N. If f is any flow and K be any cut in a network N then show that $val(f) \leq cap(K)$.
- iv. If G is a connected simple planar graph with $p \geq 3$ vertices, q edges and f regions then
 - I) Show that if q = 3p 6 then each region is triangle.
 - II) Deduce that a convex polyhedron with 12 vertices and 20 faces is composed entirely of triangles.
- 4. (a) Attempt any **ONE** question from the following:

- (8)
- i. State and prove the necessary and sufficient condition for a family of n sets to have System of Distinct Representative.
- ii. An elf has a staircase of n stairs to climb. Each step it takes can cover either one stair or two stairs. Find a recurrence relation for a_n , the number of different ways for the elf to ascend the n-stair staircase and solve it by using generating function.
- (b) Attempt any **TWO** questions from the following:

(12)

- i. Define a rook polynomial. Let $R_{n,m}(x)$ be the rook polynomial for the $n \times m$ chess board, all squares may have rooks. Show that $R_{n,m}(x) = R_{n-1,m}(x) + mxR_{n-1,m-1}(x)$
- ii. Show that a matching M in G is a maximum matching if and only if G contains no M-augmenting path.
- iii. Find the coefficient of x^{16} in $(x^2 + x^3 + x^4 + \dots)^5$. What is the coefficient of x^r ?
- iv. Let h_n denote the number of nonnegative integral solutions of the equation $3e_1 + 4e_2 + 2e_3 + 5e_4 = n$. Find the generating function f(x) for $h_0, h_1, \ldots, h_n, \ldots$
- 5. Attempt any **FOUR** questions from the following:

(20)

- (a) For any graph G, prove that $\chi(G) \leq \Delta(G) + 1$ where $\chi(G)$ represents vertex chromatic number of a graph G and $\Delta(G)$ denotes the maximum degree of G. Give an example of graphs for which $\chi(G) < \Delta(G)$.
- (b) Prove that every tree with $n \ge 2$ vertices is 2-chromatic.
- (c) If G be a simple connected graph with at least 11 vertices then prove that either G or its complement \overline{G} must be nonplanar.
- (d) If f is flow in a network N and P is any f—incrementing path, then show that there exists a revised flow f' such that valf' > valf.
- (e) Find the rook polynomial for the following

$$\{(1,1),(2,5),(3,3),(4,2),(4,4),(5,1),(5,3)\}.$$

(f) Let $\{A_1, A_2, \ldots, A_n\}$ be a family of sets such that for each $k, 1 \leq k \leq n$ and for each choice of $1 \leq i_1 < i_2 < \cdots < i_k \leq n$, $|A_{i_1} \cup A_{i_2} \cup \cdots \cup A_{i_k}| \geq k+1$. Let x be any element of A_1 . Show that $\{A_1, A_2, \ldots, A_n\}$ has a system of distinct representatives in which x represents A_1 .

65658 3 of 3