University of Mumbai

Examinations Commencing from 1st June 2022 to 15th June 2022

Program: Mechanical Engineering Curriculum Scheme: **REV-2019 'C' Scheme**

Examination: BE Semester V

Course Code: MEDLO5011 and Course Name: Optimization Techniques

Duration: 3 hour Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks 2 marks each
1.	In simplex, maximization problem is optimal when all $(Cj - Zj)$ values are
Option A:	Either zero or negative
Option B:	Either zero or positive
Option C:	Only positive
Option D:	Only negative
1	
2.	Objective function of a linear programming problem is
Option A:	a constraint
Option B:	function to be optimized
Option C:	A relation between the variables
Option D:	None of these
3.	A set of values of decision variables which satisfies the linear constraints and nn-
	negativity conditions of a L.P.P. is called its
Option A:	Unbounded solution
Option B:	Optimum solution
Option C:	Feasible solution
Option D:	None of these
4.	The maximum value of the object function $Z = 5x + 10$ y subject to the
Option A:	constraints $x + 2y \le 120$, $x + y \ge 60$, $x - 2y \ge 0$, $x \ge 0$, $y \ge 0$ is
Option B:	300
Option C:	400
Option D:	800
Option D.	
5.20	The maximum value of $Z = 4x + 2y$ subject to the constraints $2x + 3y \le 18$, $x + y$
	$\geq 10, x, y \leq 0 \text{ is}$
Option A:	36
Option B:	40
Option C:	30
Option D:	None of these
12 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
6,	The signal power and noise power are indicated by S & N respectively. If the
	signal power increases to 2S and the noise power reduce by half. The ratio of the
\$ 10,00 C	old SNR to the new SNR is given by
Option A:	44
Option B:	1/6
Option C:	6
Option D:	2/3
17.63 3.47.63	

7.	In which method of MADM, each attribute is given a weight & sum of all weight
	must be equal to 1.
Option A:	SAW
Option B:	WPM
Option C:	ANP
Option D:	AHP
8.	In data normalization first decide the attribute is either beneficial or non beneficial. If beneficial then
Option A:	Put 1 at a place of maximum value and then divide that element to other elements in that colomn so division will be less than 1.
Option B:	Put 1 at a place of minimum value and then divide that element to other elements in that column so division will be less than 1.
Option C:	Put 1 at a place of maximum value and then divide that element to other elements in that colomn so division will be greater than 1.
Option D:	Put 1 at a place of minimum value and then divide that element to other elements in that column so division will be greater than 1.
9.	The Taguchi approach related to loss is:
Option A:	Loss as long as the part deviates from target
Option B:	Loss as long as the part stick to target
Option C:	Loss as long as the part cross the UCL
Option D:	Loss as long as the part cross the LCL
10.	A production process makes parts for $10^{\pm0.2}$ at a cost of Rs. 25/- each. Determine loss when part is made at 10.10
Option A:	7.25
Option B:	6.25 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Option C:	5.25
Option D:	6.70

Q2.	Solve any Two Questions out of Three 10 marks each
Å	Find the maximum and minimum value of $y = 3x^5 - 5x^3$. At $x = 0$, = 0 x is a point of inflexion At $x = 1$, = 30 i.e. y is minimum at $x = 1$ At $x = -1$, = -30 < 0, y is maxi at $x = -1$
В	Show that the right circular cylinder of given surface (including its ends) and maximum volume is such that its height is equal to twice its radius.
C	Use dynamic programming technique to solve the following problem. Max $Z = X_1.X_2.X_3.X_4$ Subject to $X_1 + X_2 + X_3 + X_4 = 12$ $X_1, X_2, X_3, X_4 \ge 0$

Q3.	Solve any Two Questions out of Three 10 marks each
A	Solve by simplex method following LP: Max. $Z = 50X1 + 80X2$ subjected to, $X_1 + 1.5X_2 \le 600$ $0.2X_1 + 0.2X_2 \le 100$ $0.1X_2 \le 30, X_1, X_2 \ge 0$.
В	Solve the following NLPP: Maximum $Z = 4x_1 + 6x_2 - 2x_1x_2 - 2x_2^2$ subjected to $x_1 + 2x_2 = 2$, x_1 , $x_2 \ge 0$.
С	Explain the concept of Sub-optimization and principle of optimality with an example.
Q4.	Solve any Two Questions out of Three 10 marks each
A	Maximize: (y_1, y_2, y_3) , Subjected to, $y_1 + y_2 + y_3 = 10$ and $y_1, y_2, y_3 \ge 0$.
В	A firm manufacture product A & B which pass through machining and finishing departments. Machining has 90 hours available; finishing can handle up to 72 hours of work. Manufacturing one product A requires 6 hours in machining and 3 hours in finishing. Each product B requires 3 hours in machining and 6 hours in finishing. If profit is Rs. 120/- per product A and Rs. 90/- per product B. Determine the best combination of product A & B to realize profit of Rs. 2100.
С	What are the various applications of optimization problems?
Q5.	Solve any Two Questions out of Three 10 marks each
A	Explain with the help of example, how optimization problems are classified based on: i) Single value objective function ii) Multi value objective function
В	Use the Kuhn – Tucker condition to solve the following non-linear programming problem: Maximize $Z=2x_1-x^2_1+x_2$, subject to the constraints, $2x_1+3x_2 \leq 6$, $2x_1+x_2 \leq 4$, x_1 , x_2 , ≥ 0 .
	What do you understand by the term 'penalty' in a constrained multivariable optimization problem? Explain how it is used to optimize multidimensional nonlinear programming problems.