University of Mumbai

Examinations Summer 2022
Program: Mechanical Engineering
Curriculum Scheme: Rev2019
Examination: TE Semester V

Course Code: MEDLO5013 and Course Name: Computational Methods

Time: 2 hour 30 minutes

Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks				
1.	In 5 experiments with the same objective, the values obtained are very near to each other. These values can be called				
Option A:	Precise				
Option B:	Accuracy				
Option C:	Average				
Option D:	Error A SOCK SOCK SOCK SOCK SOCK SOCK SOCK SOCK				
1	827 42 8 2 45 12 12 12 12 12 12 12 12 12 12 12 12 12				
2.	Truncation error is the difference between .				
Option A:	the exact solution of the partial differential equation and the discretized equations				
Option B:	the exact partial differential equation and the discretized equations				
Option C:	the exact solution and the numerical solution of the partial differential equations				
Option D:	the exact partial differential equation and its solution				
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$				
3.	Cramer's Rule fails for				
Option A:	Determinant > 0				
Option B:	Determinant < 0				
Option C:	Determinant = 0				
Option D:	Determinant = non-real				
Ontion A:	One of the Eigen vectors of the matrix $\begin{bmatrix} -5 & 2 \\ -9 & 6 \end{bmatrix}$ is?				
Option A:					
Option B:					
Option C:					
Option D:					
5.	Rate of convergence of the Newton- Raphson method is generally?				
Option A:	Super linear				
Option B:	Linear				
Option C:	Quadratic				
Option D:	Cubic				
Se Color					
6.	Number of iterations depends on the ?				
Option A:	Initial value taken to start the iteration				
Option B:	Type of linear equations				
Option C:	Number of unknowns				
Option D:	Approximation to be done				
9 30 20 37 A					
7.5	The numerical method for solving the differential equations by approximating them with difference equations is called?				
Option A:	Euler's method				

Option B: Finite Volume method Option C: Finite Element method Option D: Finite Difference method 8. The predictor-corrector method is a combination of Option A: Midpoint and trapezoidal rules Option B: Backward Euler method and Trapezoidal rule Option C: Implicit and explicit methods Option D: Forward and backward Euler methods 9. Numerical techniques more commonly involve Option A: Iterative method Option B: Direct method Option C: Elimination method Option C: Elimination method		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Option D: Finite Difference method 8. The predictor-corrector method is a combination of Option A: Midpoint and trapezoidal rules Option B: Backward Euler method and Trapezoidal rule Option C: Implicit and explicit methods Option D: Forward and backward Euler methods 9. Numerical techniques more commonly involve Option A: Iterative method Option B: Direct method Option C: Elimination method	Option B:	Finite Volume method
8. The predictor-corrector method is a combination of Option A: Midpoint and trapezoidal rules Option B: Backward Euler method and Trapezoidal rule Option C: Implicit and explicit methods Option D: Forward and backward Euler methods 9. Numerical techniques more commonly involve Option A: Iterative method Option B: Direct method Option C: Elimination method	Option C:	Finite Element method
Option A: Midpoint and trapezoidal rules Option B: Backward Euler method and Trapezoidal rule Option C: Implicit and explicit methods Option D: Forward and backward Euler methods 9. Numerical techniques more commonly involve Option A: Iterative method Option B: Direct method Option C: Elimination method	Option D:	Finite Difference method
Option A: Midpoint and trapezoidal rules Option B: Backward Euler method and Trapezoidal rule Option C: Implicit and explicit methods Option D: Forward and backward Euler methods 9. Numerical techniques more commonly involve Option A: Iterative method Option B: Direct method Option C: Elimination method		
Option B: Backward Euler method and Trapezoidal rule Option C: Implicit and explicit methods Option D: Forward and backward Euler methods 9. Numerical techniques more commonly involve Option A: Iterative method Option B: Direct method Option C: Elimination method	8.	The predictor-corrector method is a combination of
Option C: Implicit and explicit methods Option D: Forward and backward Euler methods 9. Numerical techniques more commonly involve Option A: Iterative method Option B: Direct method Option C: Elimination method	Option A:	Midpoint and trapezoidal rules
Option D: Forward and backward Euler methods 9. Numerical techniques more commonly involve Option A: Iterative method Option B: Direct method Option C: Elimination method	Option B:	Backward Euler method and Trapezoidal rule
9. Numerical techniques more commonly involve Option A: Iterative method Option B: Direct method Option C: Elimination method	Option C:	Implicit and explicit methods
Option A: Iterative method Option B: Direct method Option C: Elimination method	Option D:	Forward and backward Euler methods
Option A: Iterative method Option B: Direct method Option C: Elimination method		
Option B: Direct method Option C: Elimination method	9.	Numerical techniques more commonly involve.
Option C: Elimination method	Option A:	Iterative method
	Option B:	Direct method
Option D: Reduction method	Option C:	Elimination method
\$1,50 \$2,00 \$2,00 \$2,00 \$3,00 \$4,00 \$4,00 \$4,00 \$5,00 \$5,00 \$5,00 \$5,00 \$5,00 \$5,00 \$5,00 \$5,00 \$5,00 \$5,00 \$5	Option D:	Reduction method
10. For which of these problems is the Crank-Nicolson scheme unconditionally stable?	10.	For which of these problems is the Crank-Nicolson scheme unconditionally stable?
Option A: Compressible flows	Option A:	Compressible flows
Option B: Advection problems	Option B:	Advection problems
Option C: Diffusion problems	Option C:	Diffusion problems
Option D: Convection-Diffusion problems	Option D:	Convection-Diffusion problems

Q2.	Solve any Two Questions out of Three 10 marks each
A	Solve the following system of equations using Gauss Elimination method- $2x_1 + x_2 + x_3 = 10$ $3x_1 + 2x_2 + 3x_3 = 18$ $x_1 + 4x_2 + 9x_3 = 16$
В	Use Secant method to determine the root of following equation $f(x) = x^3 - 5x - 7 = 0$ Find the root correct up to '3' places of decimal point.
9777	Fit a straight line for the following data:
2000	x 1 2 3 4 5 6 7
Str Co. Ok Ve	y 0.5 2.3 2.1 4.2 3.6 5.8 5.5
37 35 4 10 S	And evaluate value of y at $x = 4.5$

Q3.	The state of the s	2000				
ASSOCIATION OF STREET	Solve any Two 5 marks each					
	Explain Error Propagation.					
	What is Fuzzy Logic? Explain Fuzzy logic Systems Architecture.					
iii.	Use Regula- Falsi method to determine the roots of the equation $e^{-x} - x = 0$. Two initial guess values being $x_0 = 0$ and $x_1 = 1$. Compute the root at the end of 4^{th} iteration.					
Boro	Solve any One 10 marks each					
	Solve the following differential equation using Adams method. $\frac{dy}{dx} = 1 + y^2 \text{ with } y = 0 \text{ when } x = 0$ Take $h = 0.2$ and find y at $x = 0.8$ The following values were obtained previously					
	X	0	0.2	0.4	0.6	
	y	0	0.2027	0.4228	0.6841	
ii.	Obtain the numerical solution of 1-Dimensional wave equation using Crank Nicolson method.					

Q4.			
A	Solve any Two	5 marks each	
i.	Solve the heat conduction problem $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$		
	Use Crank- Nicolson formulae to co	$\sin \pi x$, $0 \le x \le 1$, and $u(0, t) = u(1, t) = 0$. compute the value of $u(0.6, 0.04)$ and e of $u(0.6, 0.04) = 0.6408$. Take $h = 0.2$,	
ii.	For the matrix $\begin{bmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ Find all the Eigen values and corresponding Eigen vectors.		
iii.	Using Euler's method, obtain the solution of $y' = x - y$, given $x_0 = 0$, $y_0 = 1$ at $x = 0.6$ taking $h = 0.2$		
В	Solve any One 10 marks each		
i.	Explain Truncation errors and Rounding errors. Round the following numbers to two decimal places. (i) 24.5431 (ii) 7.4679 (iii) 102.6554 What would be the effect of truncating the above numbers?		
ii.	Given the points $(0,0)$, $(\pi/2,1)$ and $(\pi,0)$ satisfying the function $y = \sin x$ $(0 \le x \le \pi)$, determine the value of $y(\pi/6)$ using the cubic spline approximation. Take $y = 2$ and $y = \pi/2$		