Course Code: PEC401 Course Name: Engineering Mathematics-4
Time: 2 hour 30 minutes Max. Marks: 80

S.E.(Mechanical)(Choice Based)(R-2020-21)('C' Scheme) Semester - IV / 41221 - Engineering Mathematics - IV DATE: 17/5/2022 QP CODE: 92122

TE: 17/5/2022	QP CODE: 92122
Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks
1.	Find the angle between the normals to the surface $xy = z^2at$ the
	points $(1,4,2)$ and $(-3,-3,3)$.
Option A:	$sec^{-1}(\frac{1}{\sqrt{22}})$
Option B:	$\frac{sec^{-1}(\frac{1}{\sqrt{22}})}{cos^{-1}(\frac{1}{\sqrt{22}})}$
Option C:	$sec^{-1}(\frac{1}{\sqrt{2}})$
Option D:	$\cos^{-1}(\frac{1}{\sqrt{2}})$
2.	Using Stoke's theorem, $\int_C \overline{F} \cdot \overline{dr}$ where $\overline{F} = yzi + xzj + xyk$ and C is the boundary of the circle $x^2 + y^2 + z^2 = 1$, $z = 0$ is
Option A:	
Option A:	33 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Option C:	13
Option D:	
3.	If correlation coefficient, $r = 0.6$ then $b_{yx} = 1.2$ then $b_{xy} = ?$
Option A:	0.45
Option B:	0.2
Option C:	0.72
Option D:	0.3
22855	
4.00	If two variables oppose each other then the correlation will be
Option A:	Positive correlation
Option B:	Negative correlation
Option C:	Perfect correlation
Option D:	No correlation
8 2 4 A	
366568	
7 7 7 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	In a Poisson distribution if $P(X = 2) = P(X = 3)$ then $P(X = 5)$ is
Option A:	0.84125
Option B:	0.084125
1000	Delia

Option C:	0.37256
Option D:	0.037256
6.	For a probability density function of a continuous random variable, the probability of a single point is
Option A:	
Option B:	
Option C:	
Option D:	constant
7.	Which of the following tests would be used to test the mean of a continuous random variable to a population mean?
Option A:	One-sample <i>t</i> -test
Option B:	Independent-samples t-test
Option C:	Chi-squared <i>t</i> -test
Option D:	Dependent-samples t-test
1	Dependent samples i test
8.	Which of the following is not true for a normal distribution?
Option A:	It is a symmetrical distribution.
Option B:	The mean is always zero.
Option C:	The mean, median, mode are always equal.
Option D:	It is a bell-shaped distribution.
9.	The value of $\int_{c} \frac{\sin z dz}{z^6}$, where c is the circle $ z = 1$ is
Option A:	$2\pi i$
Option B:	πi
Option B.	<u> </u>
Option C:	$3\pi i$
Option C.	
Option D:	$\frac{20}{5\pi i}$
Option B.	
10.	The value of integral $\oint_C \frac{1}{z-1} dz$, where c is $ z-1 =2$ is
Option A:	0 2 2 1
Option B:	
Option C:	-2πί
Option D:	$2\pi i$

$\mathbf{Q2}$	Solve any Four out of Six	5 marks each
	Obtain Laurent's expansion of $f(z) =$	$\frac{z-1}{z^2-2z-3}$ in (i) $1 < z < 3$ (ii)

	z > 3							
В	_		e recorded for 11 students. Find					
	Spearman's rank correlation coefficient between the ranks obtained.							
	Pre-module	Post-module						
	18	22						
	21	25						
	16	17						
	22	24						
	19	16						
	24	29						
	17	20						
	21	23						
	23	19						
	18	20						
	14	15	20 8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					
C	_		ntaining 7 blue, 5 yellow, 3 purple					
	balls. He is offered Rs. 7, Rs. 5, Rs. 3 if he draws 3 balls of same							
		f same colour, 1 ball of	of each colour respectively. Find					
	his expectation.							
D	0-1-12		a new diet program states that the					
	participants are expected to lose on an average 22 pounds in five							
	weeks. Suppose that, from the data of the five-week weight losses of 26							
	participants, the sample mean and sample standard deviation are found							
	to be 23.5 and 10.2, respectively. Could the statement in the brochure							
	be substantiated based on these findings? Test at the $\alpha = 0.05$ level of							
	significance.		10,14,64					
E	Evaluate using	Green's theorem	$(x^2ydx + y^3dy)$ where c is the					
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Evaluate using Green's theorem $\int_c (x^2ydx + y^3dy)$ where c is the boundary of the region bounded by $y = x^2$ and $y = x$ from (0,0) to (1,1) then							
STATE C	to (0,0) traversed		x and $y = x$ from $(0,0)$ to $(1,1)$ then					
E	Show that the	$\bar{E} = (x^2 - x^2)$	(x^2) $(x^2 + (x^2 + x^2))$ $(x^2 + (x^2 + x^2))$					
8 18 8 8 8 E	Show that the vector, $\overline{F} = (x^2 - yz)i + (y^2 - xz)j + (z^2 - xy)k$ is irrotational and hence, find \emptyset such that $\overline{F} = \nabla \emptyset$.							
222	3, C. C. V. 10 5. L. V.							
Q3	Solve any Four		5 marks each					
A CONS			tate school for the mentally					
	retarded are approximately normally distributed with a mean of 60 and							
	a standard deviation of 10.							
12 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(a) What is the probability that an individual picked at random will							
	have an IQ between 55 and 75? (b) what is the lowest IQ of top 30%							
14000000000000000000000000000000000000	individuals?							
B	If the mean age a	 at death∙ of 64 men ei	ngaged in an occupation is 52.4					
1266 2 2000	If the mean age at death of 64 men engaged in an occupation is 52.4 years with standard deviation of 10.2 years, what are the 98%							
2 2 2 2 C	confidence limits for the mean age of all men in that population?							
SAN TERM	4							
SE S	Also determine can it be safely assume at 5% level of significance that							
	that mean age of death of population is 56?							
C C	If the directional d	derivative of $\emptyset = ax^2 +$	by+2z at (1,1,1) is maximum in the					
	direction of $i + j$, (-,-,-, <u>-</u> ,					
5 8 5 D 5 8 5 8	- a-		va simala (i) la 1 il 72					
\$ 15 W 10 10 10 10 10 10 10 10 10 10 10 10 10	Evaluate $\int_{c} \frac{1}{(z-1)}$	$\frac{1}{(2z+3)}$, where c is the	the circle (i) $ z + i = \sqrt{3}$					

								047.K	1 x 10	0 8 7	VO 749
Г								35 30	3.00	16.85	5 10 C
Е		kes' theo			-			On Da		V - V O	- V V Z
		boundar			ınded l	by $y = 0$	0, x =	2, y =	x in th	e xy p	lane.
F	For given the table of points										
	X	0	2	4	6	8	3001	265	20	20 CE	F. 62. 64.
	Y	10	12	18	22	20	A (A) A	J 43 41	30		30 75 35
	Use normal equations, fit the straight line $y = ax + b$ to the data and find										
	the value of $y(22)$.										
Q4 A	1	iny Fou idy of th			2	12 CA CA	4700	16,00	1000	narks	
	a large area of land was sprayed. Later the area was examined for live insects by randomly selecting squares and counting the number of live insects per square. Past experience has shown the average number of live insects per square after spraying to be 0.5. If the number of live insects per square follows a Poisson distribution, find the probability that a selected square will contain: (a) One or more live insects (b) Two live insects										
В	On an average 20% of population in an area, suffer from T.B. What is the probability that out of 6 persons chosen at random from this area (a) at least 2, (b) none suffer from T.B.?										
C co	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	te $\int_{c} \overline{F}$. A (1,0,0				· (xz +	1)j +	- xyk e	ılong t	he lin	e
D	The following figures show the distribution of the digits in numbers chosen at random chosen from a telephone directory. Test at 5% level whether the digits may be taken to occur equally frequently in the directory.										
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Digits	0 6	1	2	3	4	5	6	7	8	9
	Frequ	. 1026	1107	997	966	1075	933	1107	972	964	853
7 7 7 E	Show that $\overline{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2z)k$ is both irrotational and solenoidal.										
F	Use divergence theorem to show that $\iint_S \overline{N} \cdot \nabla r^2 ds = 6V$ where S is any enclosed surface enclosing volume V.										