Paper / Subject Code: 51621 / Engineering Mathematics-III

S.E.(Mechanical / Chemical) Engineering)(SEM-III)(Choice Base Credit Grading System) ((R-19) (C Scheme) - Engineering Mathematics-III QP CODE: 10031369 DATE: 24/05/2023

(3 Hours) Total Marks :80

Note: 1) Question No.1 is compulsory

2) Attempt any Three from the remaining

Q1

- a) Find L[$sinh^5t$]
- b) Find a, b, c, d, e if $f(z) = (ax^3 + by^2x + 3x^2 + cy^2 + x) + i(dx^2y 2y^3 + exy + y) \text{ is analytic}$
- c) Find half range sine series of $f(x) = x(\pi x)$ in $(0, \pi)$
- d) If $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ Find eigenvalue of Adj(A)

Q2

a) If L[f(t)] =
$$\frac{9s}{9s^2 - 3s + 6}$$
 then find L[e^t f(3t)]

- b) Find Fourier series for $f(x) = x^2$; $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$
- c) Find analytic function f(z)=u+iv in terms of z where $u+v=e^x(\cos y+\sin y)$

Q3

A string is stretched and fastened to two points distance l apart. Motion is started by displacing the string in the form y=a $\sin(\pi x/l)$ from which it is released at time t=0.Show that the displacement of a point at a

6

a) distance x from one end at time t is given by

$$y = a \sin\left(\frac{\pi x}{l}\right) \cos\left(\frac{\pi ct}{l}\right)$$

- Prove that $u=x^2-y^2-2xy+2x-3y$ is harmonic function hence find it's harmonic conjugate function.
- Find the Fourier series to represent $f(x) = \begin{cases} x, & 0 < x < \pi \\ 2\pi x, & \pi < x < 2\pi \end{cases}$ in $(0, 2\pi)$

Q4

Evaluate
$$\int_0^\infty e^{-t} \left[\frac{\cos 6t - \cos 4t}{t} \right] dt$$

Find inverse Laplace transform of
$$\frac{1}{(s-2)^2(s+1)}$$

c) Is the matrix
$$A = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 diagonalizable? If so find the Diagonal

form of A and transforming matrix of A

Q5

Using Cayley Hamilton Theorem find $A^9 - 6A^8 + 10 A^7 - 3A^6 + A^8 + A^8$

a) where
$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 3 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$

Solve by Crank-Nicholson simplified formula $\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial t} = \mathbf{0}$,

 $0 \le x \le 1$ subject to the condition u(0,t) = 0, u(1,t) = 100, $u(x, 0)=100 \text{ (x-x}^2)$ & h=0.25 for one time step

Find the inverse Laplace transform of

 $\log[(s^2 - 4)(s^2 - 9)]$

8

(ii)
$$\frac{s}{(s-5)^2}$$

Q6

Find the Laplace Transform of $\int_0^t u coshus inhudu$

6

Find the solution of $\frac{\partial^2 u}{\partial x^2} - 32 \frac{\partial u}{\partial t} = 0$, 0 < x < 1,

u(x,0)=0, u(0,t)=0, u(1,t)=10+t, taking h=0.25, k=0.025 for $0 \le t \le 1$ where 'h' is the step length for x axis and 'k' is the step size in time direction using Bender-Schmidt method.

8

Find inverse Laplace transform of $\frac{s}{(s^2+16)^2}$ using convolution theorem