5

5

5

5

10

10

10

10

10

Duration: 3 hours

Total marks: 80

- N.B. (1) Question No. 1 is compulsory.
 - (2) Solve any three questions from remaining questions.
 - (3) Draw suitable diagrams wherever necessary.
 - (4) Assume suitable data, if necessary.

- a) State and explain closure properties of regular language.
- b) Design a Moore machine to convert each occurrence of 100 to 101.
- c) Give formal definition of a Push Down Automata.
- d) Let G be the grammar. Find the leftmost derivation, rightmost derivation and parse tree for the string 001222.

G:
$$S \rightarrow 0S \mid 1A \mid 2B \mid \epsilon$$

 $A \rightarrow 1A \mid 2B \mid \epsilon$
 $B \rightarrow 2B \mid \epsilon$

- e) Give a regular expression for a language over the alphabet $\Sigma = \{a, b\}$ containing at most two a's
- Q2. a) Design a DFA for the regular expression (a+b)*aba

 b) Design a Mealy machine over the alphabet {0, 1} which outputs EVEN, ODD

 according to the number of 1's encountered as even or odd.
- Q3.a) Find a regular expression RE corresponding to the following FA

b) Using pumping lemma prove that the following language is not regular

L= { ww | w
$$\in$$
 {0, 1}* }

- Q4.a) Design a PDA for recognizing the L= $\{a^m b^n c^{m+n} | m,n>=1\}$.
 - b) Construct a TM accepting palindromes over $\Sigma = \{a,b\}$.
- Q5. a) What is a Greibach Normal Form (GNF)? Convert the following CFG to GNF

Turn Over

20

- b) Design a NFA for accepting input strings that contain either the keyword 000 10 or the keyword 010 and convert it into an equivalent DFA.
- Q6. Write short notes on (any two)
 - a) Variants of Turing Machines
 - b) Recursive and Recursively enumerable language
 - c) Chomsky Hierarchy
 - d) Halting Problem
 - e) Simplification of CFG.