shilpa-2nd half-(c)13-33

Con. 7854-13.

GX-12040

(3 Hours)

[Total Marks: 80

- N. B.: (1) Question No. 1 is compulsory.
 - (2) Answer any three questions from Q. 2 to Q. 6.
 - (3) Each question carry equal marks.
 - (4) Non-programmable calculator is allowed.
- 1. (a) Find $L^{-1} \left\{ \frac{e^{\frac{24-35}{4-35}}}{(s+4)^{\frac{5}{2}}} \right\}$

5

5

5

5

6

- (b) Find the constant a,b,c,d and e If.
 - $f(z) = (ax^4 + bx^2y^2 + cy^4 + dx^2 2y^2) + i(4x^3y exy^3 + 4xy)$ is analytic.
- (c) Obtain half range Fourier cosine series for $f(x) = \sin x$, $x \in (0, \pi)$.
- (d) If r and r have their usual meaning and a is constant vector, prove that
 - $\nabla \times \left[\frac{\mathbf{a} \times \overline{\mathbf{r}}}{\mathbf{r}^{n}} \right] = \frac{(2-\mathbf{n})}{\mathbf{r}^{n}} \mathbf{a} + \frac{\mathbf{n} (\mathbf{a} \cdot \overline{\mathbf{r}}) \overline{\mathbf{r}}}{\mathbf{r}^{n} + 2}$
- 2. (a) Find the analytic function f(c) = u + iv If $3u + 2v = y^2 x^2 + 16$ xy.
 - (b) Find the z transform of $\left\{a^{|k|}\right\}$ and hence find the z transform of $\left\{\left(\frac{1}{2}\right)^{|k|}\right\}$ 6
 - (c) Obtain Fourier series expansion for $f(x) = \sqrt{1 \cos x}$, $x \in (0, 2\pi)$ and hence 8

deduce that $\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} = \frac{1}{2}.$

- 3. (a) Find:
 - (i) $L \left\{ \frac{s}{(2s+1)^2} \right\}$
 - (ii) $\stackrel{-1}{L} \left\{ \log \frac{s^2 + a^2}{\sqrt{s+b}} \right\}$
 - (b) Find the orthogonal trajectories of the family of curves e^{-x} cos y + xy = ∞ 6 where ∞ is the real constant in xy plane.

- (c) Show that $\vec{F} = \left(ye^{xy}\cos z\right)i + \left(xe^{xy}\cos z\right)j \left(e^{xy}\sin z\right)k$ is irrotational and find the scalar potential for \vec{F} and evaluate $\int_c \vec{F} \cdot dr$ along the curve joining the points (0, 0, 0) and $(-1, 2, \pi)$.
- 4. (a) Evaluate by Green's theorem. $\int e^{-x} \sin y \, dx + e^{-x} \cos y \, dy$ where c is the rectangle whose vertices are $(0, 0) (\pi, 0) (\pi, \frac{\pi}{2})$ and $\left(0, \frac{\pi}{2}\right)$.
 - (b) Find the half range sine series for the function.

$$f(x) = \frac{2kx}{\ell}, \qquad 0 \le x \le \frac{\ell}{2}$$
$$= \frac{2k}{\ell} (\ell - x), \quad \frac{\ell}{2} \le x \le \ell$$

- (c) Find the inverse z-transform of $\frac{1}{(z-3)(z-2)}$
 - (i) |z| < 2
 - (ii) 2 < |z| < 3
 - (iii) |z| > 3.
- 5. (a) Solve using Laplace transform. $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 3y = e^{-x}$, y (0) = 1, y' (0) = 1.
 - (b) Express $f(x) = \frac{\pi}{2} e^{-x} \cos x$ for x > 0 as Fourier sine integral and show that

$$\int_{0}^{\infty} \frac{w^{3} \sin wx}{w^{4} + 4} dw = \frac{\pi}{2} e^{-x} \cos x$$

(c) Evaluate $\iint_s F \cdot nds$, where $\vec{F} = xi - yj + (z^2 - 1)k$ and s is the cylinder formed by the surface z = 0, z = 1, $x^2 + y^2 = 4$, using the Gauss - Divergence theorem.

(a) Find the inverse Laplace transform by using convolution theorem.
$$\frac{-1}{L} \left\{ \frac{s^2 + 2s + 3}{\left(s^2 + 2s + 5\right)\left(s^2 + 2s + 2\right)} \right\}.$$

$$\left[\left(s^2 + 2s + 5 \right) \left(s^2 - \frac{1}{2} \right) \right]$$

(b) Find the directional derivative of $\phi = 4e^{2x-y+z}$ at the point (1, 1, -1) in the direction towards the point (3, 5, 6).

Find the image of the circle $x^2 + y^2 = 1$, under the transformation $w = \frac{5 - 4z}{1 - 2}$.