Paper / Subject Code: 10552 / Elective : Semiconductor Physics

22/05/2025 FE SEM-II (NEP-2020)- CSE-AIML / IT / EXTC / CYBER SECURITY-

SEMICONDUCTOR PHYSICS QP CODE: 10085367

Duration: $1\frac{1}{2}$ hour Max. Maks: 45

Note: 1. Question No. 1 is compulsory.

2. Solve any two questions from the remaining.

3. Draw diagrams where ever necessary.

Q.1. Solve any five from the following.

 (3×5)

- a) The resistivity of Cu is 1.72×10^{-8} ohm-m. Calculate the mobility of electrons in Cu. Given that Number of electrons per unit volume is $10.41 \times 10^{28}/\text{m}^3$.
- b) How does biasing influence the operation of a BJT in its different regions?
- c) Determine the value of R_s required to self-biased a p-channel JFET with $I_{DSS} = 25$ mA, $V_{GS(OFF)} = 15$ V and $V_{GS} = 5$ V.
- d) Explain the importance of surface to volume ratio in nano-technology.
- e) Calculate the junction capacitance of a Ge diode whose area is 1 mm \times 1mm and depletion region width is 2 μ m. The relative permittivity of Ge is 16. Permittivity of free space is 8.54×10^{-12} F/m.
- f) Differentiate between Enhancement Type and Depletion Type MOSFET.
- g) Determine the wavelength and colour of light emitted by GaP LED of $E_g = 2.25$ eV.

- a) Deduce the expression for collector current and characteristics of NPN transistor in CB mode.
- b) A sample of n-type of silicon has a donor density of $10^{20}/\text{m}^3$. It is used in the Hall effect experiment. If the sample of the width 4.5 mm is kept in a magnetic field of 0.55 T with current density of 500 A/m², find (i) Hall voltage developed in it (ii) Hall Coefficient (iii) Hall angle mobility of electrons is 0.17 m²/V-sec.
- c) Illustrate the working and advantages of Photodiode.

 $Q.3. \qquad (5\times3)$

- a) Derive the expression for barrier potential of a p-n junction diode.
- b) Explain working principle and output characteristics of the N-channel Enhancement type MOSFET.
- c) Explain the effect of particle size on photoluminescence and electrical properties of nano materials.

 $Q.4. (5\times3)$

- a) Define Fermi level. Explain and locate the shifts in Fermi level with increase in temperature in n- type semiconductor.
- b) Silicon diode is subjected to a forward voltage of 0.7 V at room temperature 27 °C with a saturation current of 10^{-12} A. Calculate the forward current assuming and ideality factor of 1.
- c) Compare between FET and BJT.

 $Q.5. \qquad (5\times3)$

- a) Explain the application of Transistor as a switch in cut-off and saturation action.
- b) Explain the working of a Zener diode and its application.
- c) Explain electron beam lithography with key steps involved in the process and give its applications.

85367 Page 1 of 1