Paper / Subject Code: 10553 / Elective : Physics of Measurements and Sensors

22/05/2025 FE SEM-II (NEP-2020) - CHEM / ELECT / MECH - PMS QP CODE: 10085097

Duration: 1 ½ Hr			Marks: 45	
Note: (1) Q.1 is compulsory (2) Attempt any two fr (3) All Questions are o	_ (_)	ASSTALL STATES		STRANGET
Q.1 Attempt any five			125 12 12 188 ×	[15M]
(a) Define the term Calibration	n. Write 2 points re	egarding its significa	nce in measureme	nts.
(b) Justify the statement: "Con-	cept of Interferenc	e yields better result	s when employed	as
(c) Fill in the gap: Full for works on the principle of _			Trans	sformer. It
(d) Draw the diagram to measu width "w", thickness "t", cu Intensity B Tesla.				ng
(e) Describe Seebeck effect .W generates?	hat is the approxir	mate range of potent	ial difference it	
(f) Assuming that atoms are pe volume ratio. Also find the s	A 17' A 20'			
(g) Write three points as the co	omparison for Acc	uracy and Precision.		
Q.2 (a) In an experiment to fin are 38Ω , 51Ω , 46Ω , 799			or five times and	the results [5M]
(b) Apply the knowledge of determine the flatness of		ight in interference a	and explain its app	lication to [5M]
(c) Draw neat diagram and	explain how LVD	T works		[5M]
Q.3 (a) Using a neat diagram, D semiconductor under the			ll Voltage for a	[5M]
(b) Write the formula that Sketch the variation of (1) Positive temperature	Resistance with re-	spect to temperature	in case of materia	-
(c) Apply the knowledge particles. Explain Transparticles.		•		•

Q.4 (a) A straight line is to be drawn using x and y coordinates as mentioned below. Using the concept of least square fit find the equation of straight line. [5M]

X	1	2	3	4	5	6	75	8	9
Y	4	7	8	11	12	15	17	21 A	20

- (b) Define (1) Transducer (2) Piezo electric effect. How Piezo electric Transducer works? Write at least three applications of Piezo electric Transducer. [5M]
- (c) What is heat? Write at least two points as the difference between heat and Temperature. Explain the use of Bimetallic thermometer for measurements of temperature. [5M]
- Q.5 (a) Explain why optical interferometry is one of the best concept for testing the flatness of a surface? [5M]
 - (b) A sample of a n-type Silicon has a donor density of 10^{20} /m 3 . It is used in the Hall effect experiment. If the sample of width 4.5 mm is kept in a magnetic field of 0.55T with current density of 500 A/m 2 . Find Hall voltage developed. [5M]

(c) Draw the neat diagram and explain how AFM works.

[5M]

