Paper / Subject Code: 10523 / Data Structure

20/05/2025 FE - IT/CSE-AIML/CYBER SECURITY - SEM-II (NEP-2020) DS QP CODE: 10083633

Duration: 2 hrs			[Max Marks:60]		
			A		
N.B. · (1) Question No.1 is Compulsory					

N.B. :	(1) Question	No 1 is	Compulsory.
--------	--------------	---------	-------------

- (2) Attempt any three questions out of the remaining five.
- (3) All questions carry equal marks.
- (4) Assume suitable data, if required, and state it clearly.

1		Attempt any THREE	[15]
	a	Explain linear and nonlinear data structures with suitable examples.	[5]
	b	Define ADT. Write ADT for Queue data structure.	[5]
	c	Differentiate between Linked List and array.	[5]
	d	Write an algorithm for reversing a string.	[5]
2	a	Write an algorithm to implement Stack using an array.	[8]
	b	Write a algorithm to reverse the singly linked list.	[7]
3	a	Write a algorithm to implement circular queue using an array.	[8]
	b	Design a Huffman tree for the word "CONSTRUCTION". Also write the Huffman code to represent each symbol.	[7]
4	a	Construct a Binary Search Tree for given numbers 45, 23, 76, 11, 30, 60, 90, 25, 50, 65.	[8]
	b	Write an algorithm for infix to postfix conversion. Convert the following expression to postfix $(A + B) * C - D / E$	[7]
5	a	Write an algorithm to implement singly linked list that performs the following functions 1. Insert a node in the beginning 2. Insert a node in the end 3. Display the linked list elements	[8]
	b	Draw the Stack structure for each case when the following operations are performed on an empty stack. 1. PUSH A, B, C, D, E, F 2. POP two letters 3. PUSH G 4. POP one letter 5. POP four letters 6. Pop one letter 7. PUSH I, J	[7]
6		8. POP one letter Write short notes on (any 3) a) Doubly Linked List b) Double Ended Queue [5] c) Types of Binary Tree [5] d) Priority Queue [5]	[15]