05/0	J6/20	125 FE ALL BRANCHES SEM-I C-SCHEME EP-I QP CODE: 1008592	4
(2 Hours) [Total Marl			
N.B	(2) (3)	Question No. 1 is compulsory. Attempt any three questions from Q.2 to Q.6. Assume suitable data wherever required. Figures to the right indicate marks.	
Q.1	Atte	empt any FIVE	(15)
	(a)	Calculate electron in intrinsic silicon at room temperature if its electrical conductivity is 4×10^{-4} mho/m.given mobility of electron=0.14 m ² /V-sec.	
	(b)	Drawthe following withreferencetocubicunit cell: (121),(100) and(011)	5
	(c)	Explain why an extensively thin film appears black in reflected light.	
	(d)	What is the physical significance of wave function psi of matter waves?	
	(e)	Explain at least three applications of super capacitors.	
	(f)	What is mesomorphicstate of matter?	
	(g)	Explain phase velocity, group velocity & wave packet of matter waves.	
Q.2	(a)	What is thin film? Derive the conditions for maxima & minima due to interference of light reflected from thin film of uniform thickness	(08)
	(b)	Explain with neat diagram construction of Bragg's X-ray spectrometer and explain the procedure to determine crystal structure using it. Calculate the maximum order of diffraction if x-ray of wavelength 0.819A ⁰ is incident on a crystal with lattice spacing of 0.282nm.	(07)
Q.3	(a)	Discuss Heisenberg's Uncertainty principle and prove that electrons cannot reside inside the nucleus of an atom using the same principle.	(08)
	(b)	What is photovoltaic effect? Explain the principle, working & applications of solar cell.	(07)
Q.4	(a)	The resistivity of intrinsic InSb at room temperature is 2×10^{-4} Ohm-cm.If the mobility of hole is $0.2 \text{ m}^2/\text{V-s}$ & mobility of electron is $6 \text{ m}^2/\text{V-s}$.Calculate	(05)

its intrinsic carrier density. Derive one dimensional time dependent Schrödinger wave equation for matter (05)wave.

A wedge-shaped film of solution which had refractive index 1.28 was observed (05)normally. The distance between successive bands was 0.15cm. The angle of wedge was 0.01°. Determine the wavelength of light used.

Q.5	(a)	Explain the function & construction of super capacitors in detail	(05)
	(b)	What is Fermi level and Fermi energy? Write Fermi-Dirac distribution function	(05)
	(c)	Show that group velocity of matter waves is equal to particle velocity.	(05)
Q.6	(a)	Distinguish between Type I and Type II superconductors.	(05)
	(b)	Find the minimum thickness of the soap film which appear yellow (wavelength 5896 A ⁰) in reflection when it is illuminated by white light at an angle of 45 ⁰ . Given refractive index of the film is 1.33.	(05)
	(c)	If the uncertainty in position of an electron is 4 x10 ⁻¹⁰ m,calcualte the uncertainty in its momentum	(05)