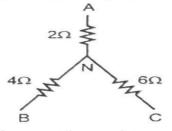
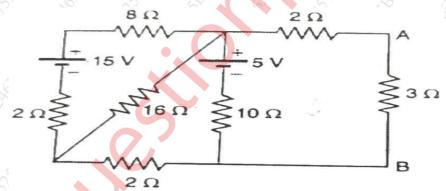
13/06/2025 FE ALL BRANCHES SEM-I (NEP-2020) BEEE QP CODE: 10083051

(2 Hours) Max Marks:60

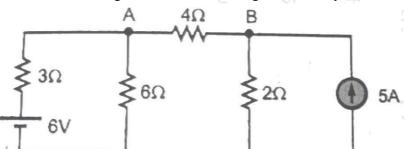

N.B.: (1) Question **No.1** is compulsory.

- (2) Attempt any **THREE** questions from the remaining **FIVE** questions.
- (3) Assume suitable data if necessary and mention the same clearly.
- (4) Figures on the right indicate the marks.


MARKS

Q1 (a) Convert the star circuit into its equivalent delta circuit

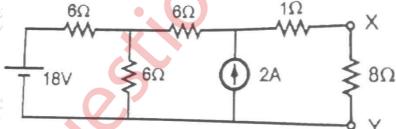
(3)


- (b) Write down the relation between line current and phase current, line voltage and phase voltage, power in balanced three phase delta connected balanced load.
- (c) Explain the concept of back emf in a DC motor. (3)
- (d) What are the losses in a single-phase transformer? (3)
- (e) Draw and explain the construction diagram of LED and enlist the applications. (3)
- Q2 (a) Using Norton's theorem, calculate the current through 3 Ω resistor across the terminals A and B in the given circuit. (10)

- (b) Explain the working principle of three phase induction motor and mention its types. (5)
- Q3 (a) An inductive coil having inductance of 0.04H and resistance 25Ω has been connected is series with another inductive coil of inductance 0.2 H and resistance 15Ω . The whole circuit is powered with 230V, 50Hz mains. Calculate the power dissipation in each coil and total power factor
 - (b) Explain the application of Zener diode as a voltage regulator. (5)

83051

Q4 (a) Find the current through 4Ω resistance using Nodal analysis



- (b) With the help of a neat circuit diagram explain the operation of a BJT as a switch.
- (c) What is the necessary condition for resonance in a series circuit? (5)

 Derive an expression for resonance frequency.

(5)

- Q5 (a) Explain the working principle of single phase transformer and derive the EMF equation.
 - (b) Explain the working principle of Brushless DC Motor. (4)
 - (c) A balanced 3-φ, star connected load consist of three coils each consisting of R= 6Ω and X_L = 8Ω. Determine the 1) Phase impedance
 2) Phase voltage 3) Phase current 4) Line current 5) Power factor when connected across 400V, 50 Hz supply.
- Q6 (a) Using source transformation find the current flowing the 8 Ω resistance (6)

- (b) A coil having a resistance of 10Ω and an inductance of 40mH is connected to a 200V, 50Hz supply. Calculate the impedance of the coil, current, power factor and power consumed.
- (c) Differentiate between BJT and FET. (5)
