	D	Duration: 3hrs [Max Marks: 80	19,
N.E	3. :	(1) Question No 1 is Compulsory.(2) Attempt any three questions out of the remaining five.	
		(3) All questions carry equal marks.	£1
		(4) Assume suitable data, if required and state it clearly.	
		(4) Assume suitable data, if required and state it clearly.	
1		Attempt any FOUR	[20]
1		Compute the DFT of the four point sequence $x(n)=\{0,1,2,3\}$	[20]
	a	Explain Quantization and effects of truncation and rounding.	
	b	Compare IIR and FIR filters.	
	c d	Explain the term linear phase and state its importance in digital filters.	
		Convert an analog filter with system function H(s) into digital IIR filter using	
	e	Impulse Invariance method. $H(s) = 10 / (S^2 + 7S + 10)$	
		impulse invariance method. $H(s) = 107 (3 + 73 + 10)$	
2		Explain the application of DSD in speech processing	, [1Ω]
4	a h	Explain the application of DSP in speech processing Obtain the linear convolution of the following convenes using evenler add	[10]
	b	Obtain the linear convolution of the following sequences using overlap add method $y(p) = \begin{pmatrix} 1 & 2 & 1 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 1 \end{pmatrix}$ and $h(p) = \begin{pmatrix} 1 & 2 & 2 & 2 & 2 & 1 & 1 & 1 & 2 & 2 &$	[10]
		method. $x(n) = \{1, 2, -1, 2, 3, -2, -3, -1, 1, 1, 2, -1\}$ and $h(n) = \{1, 2, 3\}$	
3	a	Draw architectural block diagram of DSP processor and explain functions of each block.	[10]
	b	Design a Butterworth digital IIR low pass filter using BLT by assuming T=1	[10]
		sec., to satisfy the following specifications	[IV]
		$0.707 \le H(e^{jw}) \le 1.0;$ $0 \le w \le 0.2\pi$	
		$ H(e^{jw}) \le 0.08;$ $0.4\pi \le w \le \pi$	
		11 (C 50.00, 0.4h 5 W 5 h	
4	90	Determine impulse response h(n) of a filter having desired frequency response	[10]
•		H _d (e ^{-j3w}) = e ^{-j (M-1) (w/2)} for $0 \le w \le \pi/2$	[IV]
		$ \begin{array}{ccc} \text{for } \pi/2 &\leq w \leq \pi/2 \\ &= 0 & \text{for } \pi/2 \leq w \leq \pi \end{array} $	
3		M=7, use frequency sampling approach.	
- Y	h	Design Chebyshev analog filter with maximum pass band attenuation of 2.5dB at	[10]
		$\Omega_{\rm P} = 20$ rad/sec and stop band attenuation of 30 dB at $\Omega_{\rm S} = 50$ rad/sec.	[IV]
		20 rad/see and stop out attendation of 50 dB at 125 = 50 rad/see.	
5	a	Write a note on polyphase filters.	[10]
	b	Design a FIR filter with hamming window for the following specifications:	[10]
		$H_{\rm d}\left(w\right)=e^{-{\rm j}3w}$ $-\pi/4\leq w\leq \pi/4$	[IV]
	10	=0	
6	a	Obtain the DFT of the sequence $x(n) = \{1,1,1,1,1,1,1,0\}$ using DIT FFT	[10]
		algorithm.	[±v]
	b	Write short note on Gibbs phenomenon.	[10]
	b c		[±0]