		Duration: 3hrs [Max Marks:80]	7
N.E	3. :	(1) Question No 1 is Compulsory.	
		(2) Attempt any three questions out of the remaining five.	Y
		(3) All questions carry equal marks.	38
		(4) Assume suitable data, if required, and state it clearly.	5
1		Attempt any FOUR	[20]
	a	Explain ADT. List linear and nonlinear data structures with examples.	
	b	Write an algorithm to check for balanced parentheses in an expression using stack.	
	c	Write a short note on the expression tree	
	d	What are the different collision avoidance techniques? Explain	
	e	What are the different ways of representing a graph data structure on a	
		computer?	
2	a	Write an algorithm to implement a queue using Arrays. Write a function for	[10]
2	a	Enqueue, Dequeue, and display.	[10]
	h	Given the postorder and inorder traversal of a binary tree, construct the original	[10]
		tree. Postorder: DEFBGLJKHCA Inorder: DBFEAGCLJHK	[10]
70			
3	a	What is hashing? What properties should a hash function demonstrate?	[10]
	b	Write an algorithm to implement a stack using a linked list.	[10]
	,		
4	a	Consider the following sorted array DATA with 13 elements: 11, 22, 30, 33, 40,	[10]
		44, 55, 60, 66, 77, 80, 88, 99 Illustrate the working of binary search technique	
		while searching an element (i) 44 (ii) 100	
	b	What is a Binary search tree? Explain different traversal techniques of binary	[10]
		tree.	
_			54.03
5	a	Explain insertion sort using an example. Write an algorithm for it and comment	[10]
	1.	on its complexity	[10]
	b	Write short notes on BFS and DFS algorithms.	[10]
6	9	Differentiate between arrays and linked lists. What are the different types of a	[10]
U	a	linked list? Write pseudocode to show creation of the node and deletion of the	[10]
٩	N.	node in the beginning of the list.	
	b	Write a short note on the implementation of the Huffman tree.	[10]

1