## University of Mumbai Examination First Half 2022

## **Examinations Summer 2022**

Program: **Electronics Engineering**Curriculum Scheme: Rev2019
Examination: TE/V

Course Code: ELDO501 and Course Name: Data Structures

Time: 2 hour 30 minutes Max. Marks: 80

|           | Chass the convect entire for following questions. All the Overtions and                                   |
|-----------|-----------------------------------------------------------------------------------------------------------|
| Q1.       | Choose the correct option for following questions. All the Questions are compulsory and carry equal marks |
| 1.        | Which of the following hash function uses remainder operator for generation of                            |
| 1.        | hash key?                                                                                                 |
| Option A: | Mid square                                                                                                |
| Option B: | Modulo N                                                                                                  |
| Option C: | Folding                                                                                                   |
| Option D: | Digit Analysis                                                                                            |
| option B. | Digit indiguid                                                                                            |
| 2.        | For list with n elements, Bubble sort involves passes and                                                 |
|           | comparisons in every pass.                                                                                |
| Option A: | n-1, n-1                                                                                                  |
| Option B: | n,n                                                                                                       |
| Option C: | n-2 , n-2                                                                                                 |
| Option D: | n-1, 1                                                                                                    |
|           |                                                                                                           |
| 3.        | In 1D array representation of binary tree, if the index of a node is 'r' then the                         |
|           | index of its left child is given by                                                                       |
| Option A: | r+1                                                                                                       |
| Option B: | 2r+1                                                                                                      |
| Option C: | 2r + 2                                                                                                    |
| Option D: | r/2                                                                                                       |
|           |                                                                                                           |
| 4.        | In non- empty Singly Linked List if a node pointer <b>cur</b> is initialized with address                 |
|           | of first node, then the loop                                                                              |
|           | while(cur->next != NULL) will terminate when cur pointer starts pointing to                               |
|           |                                                                                                           |
| Option A: | NULL                                                                                                      |
| Option B: | Last node                                                                                                 |
| Option C: | Second last node                                                                                          |
| Option D: | First Node                                                                                                |
|           |                                                                                                           |
| 5.        | In Preorder traversal of binary tree, the sequence is                                                     |
| Option A: | Node Left Subtree Right Subtree                                                                           |
| Option B: | Left Subtree Right Subtree Node                                                                           |
| Option C: | Left Subtree Node Right Subtree                                                                           |
| Option D: | Node Right Subtree Left Subtree                                                                           |
|           |                                                                                                           |
| 6.        | Let the following circular queue can accommodate maximum six elements with                                |
|           | the following data:                                                                                       |

|                     | Survey = 2                                                                               |  |  |
|---------------------|------------------------------------------------------------------------------------------|--|--|
|                     | front = 2 rear = 4                                                                       |  |  |
|                     | queue = ; L, M, N,,                                                                      |  |  |
| Oution A.           | What will happen after INSERT O operation takes place?                                   |  |  |
| Option A:           | front = 2 rear = 5                                                                       |  |  |
| Oution Di           | queue = ; L, M, N, O,<br>  front = 3 rear = 5                                            |  |  |
| Option B:           |                                                                                          |  |  |
| Ot.: C.             | queue = L, M, N, O,<br>front = 3 rear = 4                                                |  |  |
| Option C:           |                                                                                          |  |  |
| Ontion Di           | queue = ; L, M, N, O,<br>front = 2 rear = 4                                              |  |  |
| Option D:           |                                                                                          |  |  |
|                     | queue = L, M, N, O,                                                                      |  |  |
| 7.                  | To convert an expression from infix to postfix form using STACK, If an operator          |  |  |
| /·                  | is encountered, then the action will be                                                  |  |  |
| Option A:           | Put it in postfix expression                                                             |  |  |
| Option B:           | Ignore it.                                                                               |  |  |
| Option C:           | Push it on stack                                                                         |  |  |
| Option D:           | Push it only if its precedence is ABOVE the residing operator else perform pop           |  |  |
| option B.           | till the condition becomes TRUE.                                                         |  |  |
|                     | MI WIE CONGRESS TROOMS                                                                   |  |  |
| 8.                  | DFS graph traversal uses whereas BFS graph traversal uses .                              |  |  |
| Option A:           | Linked List, Stack                                                                       |  |  |
| Option B:           | Queue , Stack                                                                            |  |  |
| Option C:           | Stack, Queue                                                                             |  |  |
| Option D:           | Stack, Stack                                                                             |  |  |
| •                   |                                                                                          |  |  |
| 9.                  | Circular queue is used to avoid which happens in linear queue.                           |  |  |
| Option A:           | Queue Full Problem                                                                       |  |  |
| Option B:           | Memory wastage                                                                           |  |  |
| Option C:           | Empty Queue problem                                                                      |  |  |
| Option D:           | Single direction traversal                                                               |  |  |
|                     |                                                                                          |  |  |
| 10.                 | is an open-addressing scheme where we look for i <sup>2</sup> slot in i'th iteration, if |  |  |
|                     | the given hash value x collides in the hash table.                                       |  |  |
|                     | the given hash value x confides in the hash table.                                       |  |  |
| Option A:           | Linear Probing                                                                           |  |  |
| Option A: Option B: |                                                                                          |  |  |
| _                   | Linear Probing                                                                           |  |  |

| Q2 | Solve any Two out of Three (10 marks each)                                                                                                  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|
| A  | Explain binary tree representation techniques with suitable examples.                                                                       |
| В  | Write an algorithm for Singly Linked list to perform the following operations:  i. Create SLL  ii. Display SLL  iii. Delete a node from SLL |
| С  | Design(Construct) a Binary Search Tree for the following list of elements: 30, 20, 40, 50, 10, 75, 85, 5, 15, 25, 45                        |

| Q3 | Solve any Two out of Three (10 marks each)                                    |
|----|-------------------------------------------------------------------------------|
| A  | Explain the Preorder, Inorder and Postorder Traversal with suitable examples. |
| В  | Design a Huffman Tree for the word "STRUCTURE".                               |
| С  | Explain any two applications of stack with examples.                          |

| Q4 | Solve any Four out of Six (5 marks each)                                                                                           |
|----|------------------------------------------------------------------------------------------------------------------------------------|
| A  | Explain various Linear & Nonlinear Data Structures with their Real World Applications.                                             |
| В  | Explain the concept of Arrays. Compare Static Arrays with Dynamic Arrays                                                           |
| C  | Write an algorithm for the BFS (Breadth First Search) graph traversal method. Apply BFS on the following Graph  V4  V5  V1  V3  V6 |
| D  | Define Graph. What is an adjacency matrix? Derive adjacency matrix for the following directed Graph.                               |

|   | 2 3                                                                                         |
|---|---------------------------------------------------------------------------------------------|
| E | How is binary search different from linear search? Write the algorithm for binary search.   |
| F | What is a collision in hashing? Explain any two collision resolution techniques in hashing. |