| | | Duration: 3Hrs. Max Marks:80 | | |---|---|--|--------------| | | N.B. : | Question No 1 is Compulsory. Attempt any three questions out of the remaining five. All questions carry equal marks. Assume suitable data, if required and state it clearly. | | | 1 | a
b
c
d
e | Attempt any Four. Compare voltage amplifier and power amplifier Explain crossover distortion with neat sketch Write a short note on current mirror circuit Draw block diagram of oscillator. State and explain Barkhausens criteria Compare all four types of negative feedback amplifiers. | [20] | | 2 | a | Explain what is a multistage amplifier? Explain the different types of coupling methods. | [10] | | | b | Write a short note on FET Cascode amplifier (CS-CG). | [10] | | 3 | a | Explain different ideal feedback topologies for a negative feedback amplifier using block diagram. | [10] | | | b | Explain working of RC phase shift oscillator with the help of circuit diagram. Give expression for frequency of oscillations. | [10] | | 1 | a
b | What are the different methods to improve CMRR. Explain any one. Explain Class-A power amplifier. Drive expression for its efficiency. | [10]
[10] | | 5 | a de la | Determine the lower cut off frequency due to the effect of coupling and bypass capacitors for an amplifier in figure 1 with the following specifications: Vcc = 20V, R1 = $40 \text{K}\Omega$, R2 = $10 \text{K}\Omega$, Rc = $4 \text{K}\Omega$, RE = $2 \text{K}\Omega$, RL = $2.2 \text{K}\Omega$ CC1 = $10 \mu\text{F}$, CC2 = $1 \mu\text{F}$, CE = $20 \mu\text{F}$, Assume ro = ∞ and β = 100 | [10] | | | b | Figure. 1 Write a short note on types of coupling used in multistage amplifiers | [10] | [10] [10] 6 a For the differential amplifier in Figure 2, the parameters are: $V^+ = 5 \text{ V}, V^- = -5 \text{ V}, R_1 = 80 \text{k}\Omega$, and $R_D = 40 \text{k}\Omega$. The transistor parameters are $\lambda = 0$ and $V_{TN} = 0.8 \text{ V}$ for all transistors, and $K_{n3} = K_{n4} = 100 \mu\text{A}/\text{V}^2$ and $K_{n1} = K_{n2} = 50 \mu\text{A}/\text{V}^2$. Determine the range of the common-mode input voltage. b Calculate the input power, output power and efficiency of the amplifier circuit in [10] the figure for an input voltage that results in base current of 10mA peak. Figure. 3