Duration: 3hrs [Max Marks:80]

N.B.: (1) Question No 1 is Compulsory.

- (2) Attempt any three questions out of the remaining five.
- (3) All questions carry equal marks.
- (4) Assume suitable data, if required and state it clearly.
- 1 Attempt any FOUR

[20

- a What are the advantages & disadvantages of negative feedback?
- b Draw block diagram of oscillator. State and explain Barkhausens criteria
- c Write a short note on current mirror circuit
- d Derive efficiency of Class A transformer coupled power amplifier
- e Compare voltage amplifier and power amplifier
- 2 a Determine the lower cut off frequency due to the effect of coupling and bypass [10] capacitors for an amplifier in figure 1 with the following specifications:

Vcc = 20V, R1 = 40K Ω , R2 = 10K Ω , Rc = 4K Ω , RE = 2K Ω , RL = 2.2K Ω CC1 = 10 μ F, CC2 = 1 μ F, CE = 20 μ F, Assume ro = ∞ and β = 100

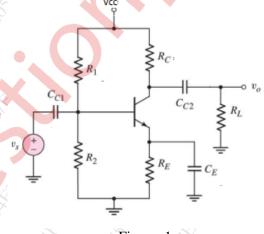


Figure. 1

- b Write a short note on FET Cascode amplifier (CS-CG). [10]
- 3 a Explain voltage series negative feedback amplifier with help of block diagram [10] and derive expression for Rif, Rof and Af.
 - b Explain the Hartley oscillator with neat labelled diagram. Describe its [10] advantages, disadvantages and applications.

14590 Page 1 of 3

- 4 a Explain in brief MOSFET differential amplifier with active load and small signal [10] analysis of MOSFET active load circuit
 - b Explain Class-B power amplifier and crossover distortion. Drive expression for [10] its efficiency.
- 5 a Explain the Low frequency response of CS amplifier with proper equations. [10]
 - b Write a short note on types of coupling used in multistage amplifiers [10]
- 6 a For the differential amplifier in Figure 2, the parameters are: [10] $V^+ = 5 \text{ V}, V^- = -5 \text{ V}, R_1 = 80 \text{k}\Omega, \text{ and } R_D = 40 \text{k}\Omega.$ The transistor parameters are $\lambda = 0$ and $V_{TN} = 0.8 \text{ V}$ for all transistors, and $K_{n3} = K_{n4} = 100 \mu \text{A/V}^2$ and $K_{n1} = K_{n2} = 50 \mu \text{A/V}^2$. Determine the range of the common-mode input voltage.

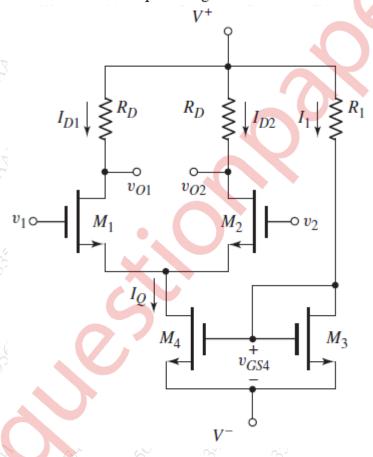


Figure 2.

b Calculate AC Power delivered to the 8Ω speaker, DC input power, power dissipated by the transistor and efficiency of the circuit shown in figure 3.

+10V

RIS

VCEQ = 10V
ICEQ = 140 mA

[10]

VcEmin=1.7 V VcEmax=18.3 V

Icmin = 25 mA

Icmax = 255 mA

RET

14590