Paper / Subject Code: 51323 / Digital Logic Circuits

SE EIX Sem-III CBCGS R-19 C-Scheme DLC SH-2023

(3 Hours)

[Total Marks: 80]

QP-1003916/

(10)

(10)

(10)

N.B.: (1) Question No. 1 is Compulsory.

- (2) Attempt any three questions out of the remaining five.
- (3) Each question carries 20 marks and sub-question carry equal marks.
- (4) Assume suitable data if required

	(4)	Assume suitable data if required.	
1.	(a)	 (I) Convert decimal number 0.875 in the binary form. (II) Convert binary number 1010101 in the decimal form. (III) Find two's complement of the number 011101000 (IV) Convert decimal number 346 into octal form. (V) Perform the operation (57 - 32) using two's complement method. Use 	(5)
	(b)	8-bit representation of numbers. Implement the functions F1 and F2 using PLA with 3 inputs, 3 product terms, 2 outputs. F1 = $\sum m (4, 5, 7)$, F2 = $\sum m (4, 5, 6)$	(5)
	(c)	Convert SR Flip Flop to D Flip Flop.	(5)
	(d)	Draw gate level diagram of 1:4 De-multiplexer having active low out puts, chip enable and explain its operation.	(5)
2.	(a)	Design a Mod 5 lockout free synchronous up counter using JKMS Flip Flops.	(10)
	(b)	Design 5-bit comparator using only one 4-bit comparator IC 7485 and explain its operation.	(10)
3.	(a)	Write short notes on (I) CPLD architecture (II) Data types in Verilog.	(10)
	(b)	Draw block diagram of synchronous counter IC 74163, explain its operation and Design Mod-13 counter using this IC.	(10)
4.	(a)	Discuss Interfacing CMOS to TTL and TTL to CMOS logic families.	(10)
	(b)	Design a Mealy type overlapping serial sequence detector using D flip flops to detect the sequence 01101.	(10)
5	(a)	Draw TTL two input NAND gate and explain its operation.	(10)

Write short notes on (I) De-Morgan Theorems (II) Hamming Code

Implement the function using only one 4:1 multiplexer and few gates;

Write a Verilog code for Full Adder using CASE statement.

 $Y = F(A, B, C, D) = \sum m(0, 1, 6, 12, 13, 14, 15)$

(b)

(a)

6.