University of Mumbai Examination First Half 2022

Examinations Commencing from 17th May 2022 to 15th June 2022

Program: Electronics and Telecommunication Engg.

Curriculum Scheme: Rev2019 Examination: TE Semester V

Paper Code 32221 Course Code: ECC 501 and Course Name: Digital Communication
Time: 2 hour 30 minutes Max. Marks: 80

Time: 2 hour 30 minutes Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	Entropy is maximum when	
Option A:	Symbols with equal probability	
Option B:	Symbols with unequal probability	
Option C:	Less no. of symbols	
Option D:	None of the above	
2.	For a (6, 3) block code, 6 is the and 3 is the number of redundant bits	
Option A:	Information bits	
Option B:	Redundant bits	
Option C:	Information rate	
Option D:	Total number of bits	
N 200 5 5		
3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	If a source generates symbols with the rate of 500 symbols/sec and entropy of the source is 5 bits/symbol, the information rate will be	
Option A:	1520bps	
Option B:	1220bps	
Option C:	1250 bps	
Option D:	2000bps	
4.	If SNR is 20dB and channel BW is 2.4 Khz, the channel capacity will be	
Option A:	16 kbps	

Option B:	20 kbps
Option C:	32 kbps
Option D:	40 kbps
5.	BW requirement for QPSK is
Option A:	Fb S S S S S S S S S S S S S S S S S S S
Option B:	Fb/2
Option C:	4fb
Option D:	2fb
6.	For M equally likely messages, the average amount of information H is
Option A:	$H = 2log_2M$
Option B:	$H = 10log_{10}M$
Option C:	$H = 2log_{10}M$
Option D:	$H = log_2 M$
7.	The Euclidean distance for QPSK is
Option A:	$\sqrt{2Eb}$
Option B:	$\sqrt{1.5Eb}$
Option C:	\sqrt{Eb}
Option D:	$2\sqrt{Eb}$
885 89 C	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
8.	In a digital communication system, the input data rate is 1Mbps and carrier frequency is 500khz, BW required for 16 PSK system is
Option A:	1 Mbps
Option B:	1.5 Mbps
Option C:	2 Mbps
Option D:	0.5 Mbps
9.50	In (n, k) linear block code, the parity bits are defined as $m = n - k$, the number of message bits are

Option A:		$k = 2^m - 1 - m$	
Option B:		$k = 2^n - 1 - m$	
Option C:		$k = 2^m - 1 - n$	
Option D:		k = n - 1 - m	
			2
10.	ISI can be reduced by		
Option A:	Differential coding		
Option B:	Polar NRZ		
Option C:	Manchester coding	88589558	
Option D:	Unipolar RZ		
		0, 4 K. V. O. O. O. V. D. S.	

Q2			
A	Solve any Two	5 marks each	
i.	Explain coherent and non-coherent detection.		
ii.	Define code rate, code efficiency, systematic and non-systematic code in context with linear block code.		
iii.	Why is MSK called shaped QPSK?		
В	Solve any One	10 marks each	
i.	Explain working of 16-ary PSK transmitter and receiver and plot spectrum and calculate BW.		
ii.	What is an eye diagram? With the help of a suita observed from the diagram.	able diagram explain the parameters	

Solve any Two	5 marks each	
Define entropy and when entropy is maximum.		
Explain characteristics of line codes.		
Compare OQPSK and non-OQPSK.		
Solve any One	10 mark each	
A DMS generates symbols A(0.4), B(0.2), C(0.1), D(0.1), E(0.1), F(0.1) Calculate Entropy of the source, obtain Huffman code and its code efficiency.		
Explain OQPSK transmitter with block diagram and draw the modulated output waveform for the given input sequence $b(t) = 1001110$		
	Define entropy and when entropy is a Explain characteristics of line codes. Compare OQPSK and non-OQPSK. Solve any One A DMS generates symbols A(0.4), B Calculate Entropy of the source, obtate Explain OQPSK transmitter with blo	

Q4.		
Q4.		
A	Solve any Two	5 marks each
i.	Compare FEC and ARQ system	
ii.	Justify that the probability of error in a matched filter does not depend on the shape of the input signal.	
iii.	Explain soft decision and hard decision decoding.	
В	Solve any One	10 marks each
i.	The parity check bits of a (8,4)	block codes are generated by
	, K	$C_5 = d_1 + d_2 + d_4$
	2 th	$C_6 = d_1 + d_2 + d_3$
		$C_7 = d_1 + d_3 + d_4$
		$C_8 = d_2 + d_3 + d_4$
	Where d_1 , d_2 , d_3 , d_4 are mess	sage bits.
	Find (1) Generator matrix and Parity check matrix	
	(2) Minimum weight of the code	
	(3) Obtain code vector for message bits (1) 1100 and (2) 1001	
ii.	Explain Viterbi decoding algorithm for convolutional code.	