Paper / Subject Code: 40821 / Engineering Mathematics-IV

1T01034 - S.E.(Electronics and Telecommunication)(SEM-IV)(Choice Base Credit Grading System)

(R-19) (C Scheme) / 40821 - Engineering Mathematics-IV

QP CODE: 10041912 DATE: 08/12/2023

Duration: 3 Hours Max. Marks: 80

- N.B. (1) Question No. 1 is COMPULSORY.
 - (2) Answer ANY THREE questions from Q.2 to Q.6.
 - (3) Use of Statistical Tables permitted.
 - (4) Figures to right indicate full marks.
- **Que. 1** a. Evaluate the integral $\int_C \frac{1}{(z^2+1)(z^2+4)} dz$, where

C is the circle |z-i|=1.

b. A random variable X has the distribution

: 0 1 2 3 4 5 6

p(x): k 3k 5k 7k 9k 11k 13k

Find i) k ii) $P(3 < X \le 6)$

- **c.** Show that the vectors $V_1 = (1,2,4)$, $V_2 = (2,-1,3)$ and $V_3 = (0,1,2)$ are linearly independent.
- **d.** Find Rank correlation coefficient for the following data

x: 12 17 22 27 32 y: 113 119 117 115 121

- **Que. 2 a.** Find usual inner product between two vectors (2, -3, 1) and (3, 4, -5). Find norm of each vectors and verify Cauchy Schwarz inequality.
 - **b.** Find the Extremal of $\int_{x_1}^{x_2} \sqrt{1+(y')^2} dx$.
 - c. The following table gives data concerning the savings bank deposits (X) in lakhs and number of strikes and lockouts(Y) over a period of 7 years. Calculate the correlation coefficient and the regression lines.

X 51 54 55 59 65 60 70 Y 38 44 33 36 33 23 10 **Que. 3** a. Show that the $V = \{(x,y) | x = 7y\}$ is a subspace of R^2 .

The weekly wages of 1000 workmen are normally distributed around a mean of Rs 70 and standard deviation Rs 5.

- **b.** Estimate the number of workers whose weekly wages will be
 - (i) between 69 and 72 (ii) more than 75
- **c.** Obtain all possible Taylor and Laurent series expansions about z=0 for the function $\frac{z}{z^2+3z+2}$ indicating the region of convergence
- **Que. 4** a. By using Cauchy residue theorem, evaluate $\oint_C \frac{\sin^3 z}{\left(z \frac{\pi}{6}\right)^2} dz$ where is a circle |z| = 2
 - **b.** A continuous random variable X has a $f(x) = kx^2e^{-x}$, $x \ge 0$ probability density function.

Find k, mean and variance.

- **c.** Using Rayleigh-Ritz method, find approximate solution for the extremal of $\int_0^1 (y'^2 4y^2 + 2x^2y) dx$, y(0)=1, y(1)=0
- Que. 5 a. Ten students got the following percentage of marks in mathematics and statistics

 | 78 | 36 | 98 | 25 | 75 | 82 | 90 | 62 | 65 | 39 |

marks in mathematics and statistics											
		78	36	98	25	75	82	90	62	65	39
	Maths		25		37	,0	7,				
	Stats	84	51	91	60	68	62	86	58	53	47

Calculate the coefficient of correlation.

b. Using Gram-Schmidt process, construct an orthonormal basis of R^3 for $S=\{(3,0,4)\ (-1,0,7)\ (2,9,11)\}$

8

c. Reduce quadratic form

41912 Page 2 of 3

 $x_1^2+2x_2^2+2x_3^2-2x_1x_2+x_1x_3-2x_2x_3$ to diagonal form by congruent transformation. Obtain transformation applied in the reduction and Find the rank, index and class value.

- **Que. 6 a.** Find the curve on which the functional $\int_0^1 \{y'^2 + 12xy\} dx \text{ with } y(0) = 0, y(1) = 1 \text{ is extremal.}$
 - **b.** A car hire firm has two cars, which they hires out day by day. The number of demands for a car on each day is distributed as a Poisson variate with mean 1.5. Calculate the proportion of days on which (i) neither car is used (ii) some demands are refused.
 - **c.** Find a singular value decomposition of the matrix $\begin{bmatrix} 4 & 0 \\ 3 & -5 \end{bmatrix}$