40824 - Signals & Systems

DATE: 26/5/2022 University of Mumbai QP CODE: 90531

Examination Summer 2022Program: **EXTC**

Curriculum Scheme: Rev 2019 Examination: SE Semester IV

Paper Code: 40824 Course Code: ECC404 and Course Name: Signals and Systems

Time: 2 hours and 30 minutes Max. Marks: 80

Q1(20 Marks)	Choose the correct option for the following questions. All the Questions are compulsory and carry equal marks		
1.	A system is described by differential equation $\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y(t) = x(t)$ is		
	initially at rest. For input $x(t) = 2u(t)$ the output $y(t)$ is		
Option A:	$(1 - 2e^{-t} - e^{-2t})u(t)$ $(1 - 2e^{-t} - 2e^{-2t})u(t)$		
Option B:			
Option C:	$(0.5 + e^{-t} + 1.5e^{-2t})u(t)$		
Option D:	$(0.5 + 2e^{-t} + 2e^{-2t})u(t)$		
2.	The power in the signal (t) = $8\cos (20\pi t - (\pi/2)) + 4\sin (15\pi t)$ is equal to		
Option A:	40		
Option B:	42		
Option C:	41 056605665666		
Option D:	82		
- P			
3.	Find the Z-transform of $y(n) = x(n+2)u(n)$		
Option A:	$z^2 X(z) - z^2 x(0) - zx(1)$		
Option B:	$z^2 X(z) + z^2 x(0) - zx(1)$		
Option C:	$z^2 X(z) - z^2 x(0) + zx(1)$		
Option D:	$z^2 X(z) + z^2 x(0) + zx(1)$		
200	KONO CARO CINTO A RESIDENCE		
4,000	Find the Z-transform of $x(n) = n[a^n u(n)]$.		
Option A:	1/(z(z-a))		
Option B:	az/(z(z-a))		
Option C:	az/(z(z+a))		
Option D:	$a/(z(z-a)^2)$		
5.77	If two LTI systems with impulse response h1(t) and h2(t) and are connected in parallel then output is given by		
Option A:	y(t) = x(t) *(h1(t) + h2(t))		
Option B:	y(t) = x(t) + (h1(t) + h2(t))		
Option C:	y(t) = x(t) * (h1(t) h2(t))		
Option D:	y(t) = (x(t) * h1(t)) + h2(t)		
CO BOOK			
6.	Laplace transform of e ^{-2t} u(t)		
Option A:	1/(S+2)		
Option B:	S/(S+2)		
Option C:	1/(S-2)		

Option D:			
Option D.	S / (S-2)		
7.			
	Inverse Laplace transform of a constant 5		
Option A:			
Option B:	$5\delta(t)$		
Option C:	5 e ^t		
Option D:	5 e ^{-t}		
	89744488860808		
8.	RoC of finite duration left sided DT signal		
Option A:	Right side of imaginary axis		
Option B:	Left side of imaginary axis		
Option C:	Entire Z-plane except $Z = 0$		
Option D:	Entire Z-plane except $Z = \infty$		
	\$ 6 5 8 5 0 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
9.	The discrete time Fourier Transform of $x[n] = \{2, 1, 2\}$		
Option A:	$1/(1+4\cos\omega)e^{-j\omega}$		
Option B:	$(2+4\cos\omega) e^{-j\omega}$		
Option C:	$(1+4\cos\omega)e^{-j\omega}$		
Option D:	$(e^{-j\omega} + 4\cos\omega) e^{-j\omega}$		
•	9878568XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
10.	The ROC of the signal $x[n] = a^n$ for $-5 < n < 5$		
Option A:	Entire z-plane		
Option B:	Entire z-plane except z=0 and z=∞		
Option C:	Entire z-plane except z=0		
Option D:	Entire z-plane except z=∞		
-			

Q2 (20 Marks)			
A	Solve any Two 5 marks each		
	Find the Laplace transform of $x(t) = 5\sin\omega_0 t$ u(t) and sketch the RoC		
	If $x[n] = [4 \ 2 \ 1 \ 3]$, Sketch $x[n]$, $x[-n]$, $-x[-n]$, $x[-2n]$ and $x[n/2]$		
	Verify the given signals are periodic or not. If periodic, determine the period and frequency of each signal $x_1(t) = \cos 50\pi t$, $x_2(t) = \cos 100\pi t$, $x_3(t) = x_1(t) + x_2(t)$ and $x_4(t) = x_1(t) + x_2(t)$		
BOOK S	Solve any One 10 marks each		
	Perform convolution of the causal signals, using Laplace transform. $x_1(t) = \cos t \ u(t), x_2(t) = t \ u(t)$		
	Find the Fourier transform of following signal and plot magnitude a phase spectrum	and	

Q3 (20 Marks)		
	Solve any Two	5 marks each
	Input to a continuous time system is $x(t) = 3$, $0 < t < 3$ and zero	

	elsewhere. Sketch $x(t+3)$, $x(-t+3)$, $x(-t-3)$,		
ii.	Find the IZT of $X[z] = 3+2z^{-1}+z^{-2} / 1-3z^{-1}+2z^{-2}$ using partial fraction method		
iii.	Determine the even and odd parts of the signals. $x[n] = \{4, -4, 2, -2\}$ (Please note - the arrow is under -4)		
В	Solve any One 10 r	narks each	
i.	Find inverse Fourier transform of $X(j\omega)$	$=\frac{(j\omega+3)}{(j\omega+4)(j\omega+2)^2}$	
ii.	Using the differentiation in frequency properties transform of $y(t)=t$ $x(t)$ where $x(t)=e^{-bt}$ $u(t)$		

Q4 (20 Marks)			
A	Solve any Two	5 marks each	
i.	Using canonical structure, realize the following IIR system with I/O relation $y[n] = x[n] + 2x[n-1] + 3y[n-1]$		
ii.	Realize the following FIR system with $h[n] = [4,0,2,-3,-4]$		
iii.	Find x(t) * h(t) using LT and ILT where x(t) = $u(t)$ and h(t) = δ (t-3)		
В	Solve any One	10 marks each	
i.	Impulse response of a LTI system is given as $h(t) = e^{-4t} u(t)$. Find H(s), sketch the RoC and verify the stability of the system		
ii.		escribed by $x(n)$, where $x(n)$ and $y(n)$ are the input of the response $y(n)$ for the input	