Paper / Subject Code: 40824 / Signals & Systems

1T01034 - S.E.(Electronics and Telecommunication)(SEM-IV)(Choice Base Credit Grading System) (R-20-21) (C Scheme) /

40824 - Signals & Systems

QP CODE: 10011849

DATE: 16/12/2022

(Time: 3 Hours)

[Total Marks: 80]

N.B.: (1) Question No 1 is Compulsory.

- (2) Attempt any three questions out of remaining five.
- (3) All questions carry equal marks.
- (4) Assume Suitable data, if required and state it clearly.

Q1. Answer any 4 questions from the given questions:

2.0

- a. Explain the application of Signals and System in Multimedia Processing.
- b. Find the fundamental period of the signal

$$x(t) = \sin\left(\frac{2\pi}{6}t\right) - \cos(\pi t)$$

c. Test the given system for linearity, causality, stability, memory and time variant.

$$y(t) = x(t^2)$$

d. Find x(-2t) and x(3t+2)

Fig. 1

- e. Explain the conditions for the existence of Fourier transform
- f. If system matrix $A = \begin{bmatrix} -3 & 1 \\ -2 & 0 \end{bmatrix}$ find the sate transition matrix.
- Q2.a. Sketch the following signals for the given signal shown in Fig. 2

10

10

- a) x(-t)
- b) x(2t+5)
- c) x(2t)
- d) x(t/2)
- e) -2x(t)

Fig. 2

b. Using unilateral Laplace transform find the output of the system given by

 $\frac{d^3}{dt^3}y(t) + 6\frac{d^2}{dt^2}y(t) + 11\frac{d}{dt}y(t) + 6y(t) = x(t): \text{ where } x(t) = e^{-4t} \ u(t) \text{ and } y(0^-) = 1,$

$$\frac{dy(t)}{dt}\Big|_{t=0^{-}} = 1, \quad \frac{d^2y(t)}{dt^2}\Big|_{t=0^{-}} = 1,$$

11849

Paper / Subject Code: 40824 / Signals & Systems

QP CODE: 10011849

Q3.a. Find inverse Z Transform of X(z),

$$X(z) = \frac{z^2 + 2Z + 1}{z^2 - \frac{3}{2}z + \frac{1}{2}}$$

b. Given DT sequence:

$$x(n) = 0.4\delta(n+2) + 0.2\delta(n+1) + 0.1\delta(n) + 0.2\delta(n-1) + 0.4\delta(n-2).$$
Determine the following:

Determine the following;

- $X(e^{j\omega})$
- $|X(e^{j\omega})|$ ii.
- iii.
- phase $\{X(e^{j\omega})\}\$ $\int_0^{2\pi} |X(e^{j\omega})|^2$
- Q4.a. Determine the state model of the system governed by the equation y[n] = -2y[n-1] + 3y[n-2] + 0.5y[n-3] + 2x[n] + 1.5x[n] + 1.5x[n-1] + 2.5x[n-2] + 4x[n-3]
 - Find the Fourier transform of $x(t) = \begin{cases} \cos \pi t \; ; \; -\frac{1}{2} \le t \le \frac{1}{2} \\ 0; \; otherwise \end{cases}$ b.
 - From the definition of Fourier transform
 - Using the convolution theorem of Fourier transform
- Q5.a Determine DTFS for the sequence $x(n) = \cos^2((\pi/8)n)$ 8
 - Find Laplace transform of $\frac{d}{dt}sin(t)u(t)$. Find the Z Transform of signal $cos(\omega_0 n)u[n]$ 4
 - 4 Find the canonic (direct form II) realization of $H(z) = \frac{1 - \left(\frac{1}{4}\right)z^{-1} - \left(\frac{1}{2}\right)z^{-1}}{1 + \left(\frac{1}{4}\right)z^{-1} - \left(\frac{1}{6}\right)z^{-1}}$
- Answer the following:
- 8 Find the autocorrelation function $R_{xx}(\tau)$ of sine wave signal $x(t) = A\sin(\omega_0 t + \varphi)$, $\omega_0 = \frac{2\pi}{T}$
- Explain the concept ROC in Z-Transform and Laplace Transform. 6
- Discuss application of signals in Control system 6