Paper / Subject Code: 51221 / Engineering Mathematics-III

S.E.(Electronics and Telecommunication / Electrical)(SEM-III)(Choice Base Credit Grading System) (R-19) (C Scheme) - Engineering Mathematics-III QP CODE: 10027200 DATE: 24/05/2023

> (Time: 3 Hours) [Total marks: 80

Note: 1). Question 1 is compulsory.

2) Attempt any 3 questions from Question 2 to Question 6

Attempt All questions **Q1**

Marks

A If
$$A = \begin{bmatrix} -1 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & -2 \end{bmatrix}$$
 then find the eigen values for the matrix

$$A^{3} + 5A + 8I + A^{-1}$$
B Find Laplace transform of $f(t) = te^{-t} \sin(4t)$

C Find the Fourier Series Expansion
$$f(x) = x$$
, where $x \in (-\pi, \pi)$

$$f(z) = x^2 + 2axy + by^2 + i(dx^2 + 2cxy + y^2)$$

is analytic.

Q2 Α

D

Using Green's theorem in a plane to evaluate the line integral

$$\oint_C (xy^2 - y)dx + (x + y^2)dy$$

Where C is the triangle with vertices at (0,0), (2,0) and (2,2) and it is traversed in anticlockwise direction

6

Find the matrix
$$A_{2\times 2}$$
 whose eigen values are 4 and 1 and their corresponding eigen vectors are $v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$

8

Find the analytic function
$$f(z) = u + iv$$
 such that
$$u - v = \frac{\cos x + \sin x - e^{-y}}{2\cos x - e^{y} - e^{-y}} \text{ when } f\left(\frac{\pi}{2}\right) = 0$$

Q3

Find the direction derivative of $\phi(x, y, z) = \sin(xy) + e^{3xz}$ in the direction of the vector v = i - 2j + 2k at the point $P = (1, \frac{\pi}{4}, 1)$

6

Find an analytic function f(z) whose real part is given $u(x,y) = x^3 - 3xy^2 + 2x + y$

6

8

$$A = \begin{bmatrix} \frac{37}{60} & \frac{17}{60} & \frac{17}{60} \\ \frac{1}{5} & \frac{7}{10} & \frac{1}{5} \\ \frac{1}{12} & -\frac{1}{12} & \frac{5}{12} \end{bmatrix}$$

And show that it is diagonalizable matrix and find its transforming matrix and the diagonal form

Paper / Subject Code: 51221 / Engineering Mathematics-III

Q4
A Using Stokes theorem to evaluate
$$\int_{\mathcal{C}} F \cdot d\bar{r}$$
 Where $F = (x - y - z)i + (y - z - x)j + (z - x - y)k$ over the paraboloid $x^2 + y^2 = 4 - z$, $z \ge 0$
B Find the orthogonal trajectories of family of curves given by $x^3y - xy^3 = c$
C Using Convolution theorem, find the inverse Laplace transform of $\phi(s) = \frac{s+1}{(s^2 + 2s + 2)(s^2 + 2s + 5)}$

Q5
A Evaluate $\int_0^\infty \frac{\cos 6i - \cos 4i}{t} dt$, using Laplace transforms
$$6$$
B Consider the vector field F on \mathbb{R}^3 defined by $F(x,y,z) = y \ t + (z\cos(yz) + x) \ f + (y\cos(yz)) \ k$ Show that F is conservative and find its scalar potential.
C Find the Fourier Series for $f(x)$ in $(0,2\pi)$ where
$$f(x) = \begin{cases} x & 0 < x \le \pi \\ 2\pi - x & \pi \le x < 2\pi \end{cases}$$
Hence deduce that
$$\sum_{n \in Odd\ natural\ numbers} \frac{1}{n^4} = \frac{\pi^4}{96}$$
Q6
A Obtain half range sine series in $(0,\pi)$ for $f(x) = x(\pi - x)$, Hence show that
$$\frac{\pi^3}{32} = 1 - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \cdots$$
B Using Cayley Hamilton theorem find
$$A^6 - 12A^5 + 30A^4 + 72A^3 - 207A^2 - 110A + 330I$$
 Where $A = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$
C i) Find $L^{-1}\left\{\log\left(\sqrt{\frac{s^2 + a^2}{s^2}}\right)\right\}$
ii) Find $L^{-1}\left\{\log\left(\sqrt{\frac{s^2 + a^2}{s^2}}\right)\right\}$