Paper / Subject Code: 51225 / Electronics Instrumentation and Control System

1T01033 - S.E.(Electronics and Telecommunication)(SEM-III)(Choice Base Credit Grading System) (R-2020-21) (C Scheme) /

51225 - Electronics Instrumentation and Control System

N.B.: (1) Question No 1 is Compulsory.

- (2) Attempt any three questions out of the remaining five.
- (3) All questions carry equal marks.
- (4) Assume suitable data, if required and state it clearly.

1 Attempt any FOUR

[20]

a Discuss static and dynamic characteristics of instruments.

[5]

[5]

- b Draw and discuss Maxwell bridge and its application for measurement of inductance.
- c What is Impulse response of a system? If Impulse response of a certain system is [5]
 - e^{-5t}. Find out transfer function of this system.
- d Define rise time, peak time, maximum overshoot, Delay time, Settling time [5]
- e Compute the transfer function of the given Lag network. [5]

- a Explain with neat diagram principle, construction and working of Strain gauge. Define [10] and derive Gauge factor.
 - b Determine the overall transfer function C(S)/R(S) for the system shown below using [10] block diagram reduction method.

a For the Signal flow graph shown below, determine the transfer function C(S)/R(S) using Mason's gain formula. [10]

13810 Page **1** of **2**

Paper / Subject Code: 51225 / Electronics Instrumentation and Control System

QP CODE: 10013810

b A second order system has a unity feedback and open loop transfer function [10]

$$G(s) = \frac{500}{s(s+15)}$$

- i) Calculate Tp, Mp and Ts for system output response when system is excited by unit step input.
- ii) Sketch transient response for unit step input.
- iii) If input is ramp of 0.5 rad/sec, calculate steady state error.
- 4 a Compare the temperature transducers RTD, thermistors and thermocouples on the [10] basis of principle, characteristics, ranges and its applications.
 - b Draw the polar plot for the transfer function $G(s) = \frac{10}{(s+2)}$. [10]
- 5 a Plot the root locus for a unity feedback control system has an open loop transfer [10] function

$$G(S) = \frac{K}{S(S+1)(S+3)(S+4)}$$

b Sketch the Bode plot for the unity feedback control system $G(s) = \frac{10}{S(s+1)(s+5)}$

Determine the gain and phase margin.

- 6 Attempt any FOUR
 - What are the three types of compensators? Explain uses of all three compensators. [5]
 - b Write a short note on thermocouple. [5]
 - c Write a short note on stability analysis using Nyquist Criteria. [5]
 - d Use the Routh's stability criterion to determine the range of K for a unity feedback system whose open loop transfer function is

$$G(s) = \frac{K}{s(s+1)(s+2)}$$

e Write a short note on steady state errors in feedback control system. [5]
