Paper / Subject Code: 51223 / Digital System Design
1T01033 - S.E.(Electronics and Telecommunication)(SEM-III)(Choice Base Credit Grading System) (R-2020-21) (C Scheme) / 51223 - Digital System Design QP CODE:10012384 DATE: 25/11/2022

Time: 3 Hours Max. Marks: 80

Question No. 1 is compulsory.

N.B.: (1)

(2		
(3 (4		
Q. 1. A	Solve any four Questions out of five a) Perform the following operation using 2's compliment	[5]
	i) $(35)_{10} - (45)_{10}$	
	ii) $(45)_{10} - (35)_{10}$ Comment on results of (i) and (ii)	
В	If $F(A,B,C) = \sum m(1,3,4,5,6) + d(0,2)$ with its truth table and express F in SOP and POS form	[5]
\mathbf{C}	Convert D flip flop to T flip flop.	[5]
D E	Explain Static RAM Design Full Adder using VHDL	[5] [5]
		- (
Q. 2.	Solve the following	(3)
A B	Prove that NAND and NOR gates are Universal gates Convert the following into BCD and OCTAL code	[10] [10]
3	i) (7AB) ₁₆ ii) (125) ₁₀	5 [10]
Q.3.	Solve any Two Questions out of Three	
A	Draw and explain a neat circuit diagram of BCD adder	[10]
B	Design a 3 – bit synchronous counter using J-K FLIP-FLOPs Realize the following functions of four variables using \$11 multipleyers	[10]
NO.	Realize the following functions of four variables using 8:1 multiplexer $F = \Sigma m(0, 1, 2, 3, 7, 9, 10, 11, 13, 14, 15)$	[10]
	$\Gamma = 2 \text{Im}(0, 1, 2, 3, 7, 9, 10, 11, 13, 14, 13)$	
Q. 4.	Solve the following	
A	What are shift registers? How are they classified? Explain working of SISO type of shift register.	[10]
B	Explain Full Adder circuit using PLA having three inputs, 8 product terms	[10]
	and two outputs.	
0.5		
Q. 5.	Solve the following Draw and explain 4- bit Johnson counter	[10]
A B	Draw and explain 3 bit asynchronous binary counter using positive edge	[10] [10]
6	triggered JK flip flop.	լւսյ
0.0		
Q. 6.	Solve the following Compare TTL and CMOS logic families	[05]
AB	Convert the following equation in its Canonical form	[05] [05]
97	Y = $AB(C + \overline{C}) + A\overline{C}(B + \overline{B}) + BC(A + \overline{A})$	լսշյ
C	Simplify the following expression using Boolean algebra	[05]
25	$Y (A,B,C) = \Sigma m(0,1,2,3,4,5,6,7)$	[]
D	Compare Moore and Mealy Machine with neat Diagram	[05]