ECS-VI-CBC'C

Time: 03 Hours Marks: 80

Note: 1. Question 1 is compulsory

- 2. Answer any three out of the remaining five questions.
- 3. Assume any suitable data wherever required and justify the same.
- Q1 a) Every data structure in the data warehouse contains the time element. Why?
- [5]

b) Define initial load, incremental load, and full refresh.

- [5]
- c) Calculate Accuracy, Recall and Precision with the help of following data:
 True Positive (TP)= 50, True Negative (TN) = 20. False Positive (FP)= 20. False Negative (FN)= 10
 - [5]

d) Elucidate Market Basket analysis with an example.

- [10]
- Q2 a) Suppose that a data warehouse consists of the four dimensions, date, spectator, location, and game, and the two measures, count and charge, where charge is the fare that a spectator pays when watching a game on a given date. Spectators may be students, adults, or seniors, with each category having its own charge rate.
 - (i) Draw a star schema diagram for the data warehouse.
 - (ii) Starting with the base cuboid [date, spectator, location, game], what specific OLAP operations should one perform in order to list the total charge paid by student spectators at GM Place in 2004?
 - b) For the given set of points identify clusters using a single linkage algorithm. Draw dendrogram. [10]

Object Attribute(X)		Attribute(Y)		
A	2	2		
В	3	2		
С	1			
D	3	1		
F	15	0.5		

- 23 a) Name the set of basic transformation tasks. Give an example for each.
- [10] [10]
- b) A database has five transactions. Let min sup count = 2 and min conf = 60%.

TID	Items
10	1, 3, 4
20	2, 3, 5
30	1, 2, 3, 5
40	2, 5
50	1, 3, 5

Find all frequent itemsets and strong association rules using Apriori Algorithm.

Of a) Describe slowly changing dimensions. What are the three types? Explain each type [10] very briefly.

Paper / Subject Code: 89324 / Data Warehousing and Mining

b) The following table contains a training set D, of class-labeled tuples randomly [10] selected from the AllElectronics customer database. Let buys computer be the class label attribute. Using Naïve Bayesian classification predict the class label of a tuple X = (age = youth, income = medium, student = yes, credit rating = fair).

RID	age	income	student	credit_rating	buys_computer
1	youth	high	no .	fair	no
2	youth	high	no	excellent	no
3	middle-aged	high	no .	fair	yes
4	senior	medium	no .	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle-aged	low	yes	excellent	yes
8	youth	medium	no ,	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	ves	excellent	ves
12	middle-aged	medium	no .	excellent	yes
13	middle-aged	high	yes	fair	yes
14	senior	medium	no .	excellent	no

- Q5 a) Explain Data mining as a step in KDD. Give the architecture of typical data mining [10] System.
 - b) Suppose that the data mining task is to cluster the following eight points (with (x, y) representing location) into three clusters: A1(2, 10), A2(2, 5), A3(8, 4), B1(5, 8), B2(7, 5), B3(6, 4), C1(1, 2), C2(4, 9). The distance function is Euclidean distance. Suppose initially we assign A1, B1, and C1 as the center of each cluster, respectively. Use the k-means algorithm to show only
 - (i) The three cluster centers after the first-round execution
 - (ii) The final three clusters
- What are the three major areas in the data warehouse? Relate and explain the architectural components to the three major areas.
 - b) The following table shows the time spent writing an essay and essay grades obtained for students in an English course. [10]

Hours spent on writing an essay	Grades		
6	82		
10	88		
2	56		
4	64		
6	77		
7	92		
0	23		
1	41		
8	80		
5	59		
3	47		

- (i) Use the method of least squares to find an equation for the prediction of a student's essay grade based on the hours spent on writing an essay in the English course.
- (ii) Predict the essay grade of a student who spent 2.35 hours on writing an essay in the English course.