		Duration: 3hrs [Max Marks:80]	
N.I	3.:	 Question No 1 is Compulsory. Attempt any three questions out of the remaining five. All questions carry equal marks. Assume suitable data, if required and state it clearly. 	OLY S
1		Attempt any FOUR	[20]
	a	Find the convolution between the sequences $x_1(n) = \{1,2,3,4\}$ and $x_2(n) = \{4,3,2,1\}$	
	b	Determine the energy of the signal $x(n) = (1/2)^n$, $n > 0$.	
	c	Define the properties Time invariance, Causality, stability.	
	d	Briefly explain the differences between FIR and IIR systems.	
	e	Derive the convolution formula in time domain.	
2	a	Determine the ZT of a ⁿ u(n)+b ⁿ u(-n-1). Mark the ROC.	[10]
	b	Determine the Inverse ZT of $X(z)=1/(1-1.5z^{-1}+0.5z^{-2})$ for ROC mod(z)>1,	[10]
		mod(z) < 0.5, 0.5 < mod(z) < 1.	
3	a	Determine the DTFT of $x(n)=2^n u(-n)$.	[10]
	b	Explain any 2 applications of DSP.	[10]
4	a	Find the DFT of the sequence $x(n) = \{1+5j,2+6j,3+7j,4+8j\}$.	[10]
	b	Find the circular convolution of the sequences $x(n) = \{0,1,2,3,4\}$ and	[10]
	7	$h(n) = \{2,1,1,2\}.$	
5	a	Design a digital low pass Butterworth filter for the following specifications using	[12]
		bilinear transformation. Passband=0-500 Hz, stopband= 2-4KHz, PB ripple=3db	
		SB attenuation = 20db, Sampling frequency=8KHz.	
	b	Find the DFT of $x(n) = \{1,2,3,4\}$ using decimation in time FFT algorithm.	[8]
6	a	Design an FIR low pass filter with 11 coefficients for the following	[12]
	A.	specifications. Pass band edge frequency=0.25 KHz Sampling frequency	
7/3		=1kHz.Use hamming window.	
	b	Find the DFT of $x(n) = \{4,3,2,1\}$ using decimation in frequency FFT algorithm. ***********************************	[8]

38275 Page **1** of **1**