Duration: (3 Hours) [Total Marks: 80]

N.B.: (1) Question No 1 is Compulsory.

- (2) Attempt any three questions out of the remaining five.
- (3) All questions carry equal marks.
- (4) Assume suitable data, if required and state it clearly.
- 1. Attempt any Four:-
 - (a) Define mutual information and average mutual information.

0.5

(b) Construct Lempel-Ziv code for the given data sequence 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0.

05

05

- (c) Calculate the channel capacity of a BSC with a conditional error probability of 0.2
- (d) Calculate the channel capacity of a Gaussian channel with a bandwidth of 3 kHz and SNR of 15.
 - (e) Explain the principles of video compression.

05

- 2. (a) For a binary channel $p(x_1) = 0.4$, $p(x_2) = 0.6$, $p(y_1/x_1) = 0.8$ and $p(y_2/x_2) = 0.7$, where X is the input random variable and Y is the output random variable. Calculate $p(x_1/y_1)$, $p(x_2/y_1)$, $p(x_2/y_2)$, $p(x_1/y_2)$.
 - (b) Calculate the average mutual information I (X;Y) for the above channel.

10

3. (a) A discrete memory less source has an alphabet of three symbols with probabilities for its output as described in Table. Generate minimum variance second order extended Huffman code. 10

7	Symbol	S_1	S_2	S_3
	Probability	0.6	0.3	0.1

(b) A discrete memory less source has an alphabet of three symbols with probabilities for its output as described in Table. Generate minimum variance second order extended Shannon-Fano code.

Symbol	S_1	S_2	S_3
Probability	0.6	0.3	0.1

4. (a) Generator matrix of a (5,2) linear block code is given below:

10

10

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

- i) Find the code word for the data 11.
- ii) Determine d_{min} and correction capability of the given code.
- iii) Decode the data sequence from the received code 11110.
- (b) Generator matrix of a (8,4) linear block code is given below:

10

87988 Page 1 of 2

	1	0	0	0	1	1	0	1
	0	1	0	0	0	1	1	1
,	0	0	1	0	1	1	1	1 1 0 1
3	Lo	0	0	1	1	0	1	1

- i) Find the code word for the data 1011.
- ii) Determine d_{min} and correction capability of the given code.
- iii) Decode the data sequence from the received code 11110100.
- 5. (a) For a (7,4) cyclic code, the generator polynomial is $G(x) = x^3 + x^2 + 1$
- 10

- i) Find the systematic cyclic code word for the data 1000.
- ii) Determine d_{min} and correction capability of the given code.
- iii) Decode the data sequence from the received code 1100011.
- (b) For a (7,4) cyclic code, the generator polynomial is $G(x) = x^3 + x + 1$

10

- i) Find the systematic cyclic code word for the data 0100
- ii) Determine d_{min} and correction capability of the given code
- iii) Decode the data sequence from the received code 0000101.
- 6. (a) Generator sequences of a (2,1,1) convolutional encoder are given below:

10

- g(1) = 11 and g(2) = 10.
- i) Sketch the encoder.
- ii) Determine the impulse response.
- iii) Find the code for the data 00111.
- iv) Sketch the tree diagram and using it decode the data from the received code 1110111000.
- (b) Generator sequences of a (2,1,2) convolutional encoder are given below:
- 10

- g(1) = 111 and g(2) = 101.
- i) Sketch the encoder.
- ii) Determine the code efficiency and constraint length.
- iii) Find the code for the data 01011.
- iv) Sketch the trellis diagram and using it decode the data from the received code 111000101100.

37988 Page 2 of 2