Time: 3 Hours Marks: 80

N.B.: (1) Question No. 1 is Compulsory.

- (2) Attempt any three questions out of the remaining five.
- (3) Each question carries 20 marks and sub-question carry equal marks.
- (4) Assume suitable data if required.

1. **Attempt any FOUR**

(20)

- a) Define Preemptive and non preemptive scheduling.
- b) Compare Deadlock avoidance and deadlock prevention.
- c) Define terms Speedup, Efficiency, Throughput related to pipeline
- d) Why is there a need for communication between two processes? Also write technique to implement IPC.
- e) Draw and explain a typical Instruction Cycle in a processor.
- 2 (a) Explain Flynn's Classification in details.

(10)

(b) Explain Pre-emptive scheduling. And Find out Average waiting Time (AWT) and Average Turn around Time (TAT) for the following. (10)

Jobs	Burst Time	Arrival Time
J1 🔊	V &V4	6 00
J2	1	S 1
J3 6	25	2
J4		3

3 (a) Explain FIFO page replacement algorithm. Find out Miss Ratio, Hit ratio for the Following string using FIFO method.

(Consider page frame size
$$= 3$$
)

(b) Explain various pipeline hazards. Explain the performance metrics for instruction Pipelines.

37897 Page 1 of 2

4. (a) Explain FCFS scheduling. For the given FCFS scheduling, calculate the average waiting time and average turnaround time. (10)

Process Id	Arrival Time	Burst Time
P1	0 35	8
P2		4
P3	2	9
P4	3	5

(b) Describe the register organization within the CPU.

(10)

(10)

- 5. (a) Explain Multi core Architecture in details.
 - (b) Explain in detail Hardwired control unit. Discuss any one method to implement it. (10)
- 6. Write a short note on (20)
 - a) Cluster
 - b) Superscalar Architecture
 - c) File Organization and Access
 - d) Virtual Memory

37897 Page 2 of 2