Paper / Subject Code: 42280 / Electrical Machine Design (DLOC - IV)

1T00837 - B.E.(Electrical Engineering)(SEM-VII)(Choice Base Credit Grading System) (R- 19-20) (C Scheme) / 42280 -

Electrical Machine Design (DLOC - IV)

QP C

ODE: 10	016409 DATE : 16/12/2022	
Durati	on – 3 Hours Total Marks	- 80
N.B.:-	 (1) Question No.1 is compulsory. (2) Attempt any three questions out of remaining five questions. (3) Assume suitable data if necessary and justify the same. 	
Q 1.	Answer the following questions.	20
a)	Define the term total magnetic loading, total electric loading, specific magnetic loading and specific electric loading.	
b)	Explain effect of short circuit ration on performance of synchronous machine.	Roy
c)	What are the desired properties of conducting materials and insulating materials used in electric machines?	
d)	Explain the need for CAD analysis	
Q 2 a)	Derive output equation of single-phase transformer and specify the various terms used.	10
Q 2 b)	Calculate approximate overall dimensions for a 200 kVA, 6600/440V, 50Hz, three phase core type transformer. The following data may be assumed: Emf per turn = 10V, maximum flux density = 1.3 Wb/m², current density = 2.5 A/mm², window space factor = 0.3, overall height = overall width, stacking factor = 0.9. Use a 3 stepped core. For 3 stepped core width of largest stamping = 0.9d, and net iron area = 0.6d² where d is diameter of circumscribing circle.	10
Q 3 a)	Derive the output equation for a three-phase induction motor and specify the various terms used.	10
Q 3 b)	Determine the main dimensions and number of turns per phase of a 3.7 kW, 400V, three phase 50Hz, squirrel cage induction motor to be started by star delta starter. Assume following data: Average flux density in the gap = 0.45 Wb/m^2 , ampere conductors per meter = 23000 , efficiency = 85% , power factor = 0.84 , winding factor = 0.955 , stacking factor = 0.9 , ratio of core length to pole pitch is 1.5.	10
Q 4 a)	Define dispersion coefficient? Explain effect of dispersion coefficient on i) Maximum power factor ii) Overload capacity	10
Q 4 b)	Explain different cooling methods of transformer.	10
Q 5 a)	Write a short note on design of field winding of synchronous machines.	10
Q 5 b)	Determine the main dimensions, flux per pole and turns per phase of a 75000 KVA, 13.8 KV, 50 Hz, 62.5 rpm, 3 phase, star connected alternator. The peripheral speed should be about 40 m/s. Assume average gap density= 0.65 Wb/m², ampere conductors per meter= 40000 and current density= 4 A /mm²	10

With a flowchart explain synthesis method of computer aided machine design.

10

10

Write a short note on design of EV grade induction motor.

Q 6 a)

Q 6 b)