11/06/2025 TE ELECTRICAL SEM-V C -SCHEME EMFW QP CODE: 10082680

Time: 3 Hours Max. Ma	rks:	δU
-----------------------	------	----

T A		
INI	ote	
1 4	ULC	

•	Ouestion	No.1	is	compulsory.
-	A MCDCIOII	11011		COLLID GLOOL Y

- Solve ANY THREE questions from the remaining five questions.
- Figure to the right indicates full marks.
- Assume suitable data wherever required, but justify the same.

			Marks
Q. 1		Solve ANY FOUR questions from following. (Each question carries 5 marks)	
	a)	"The line integral of the magnetic field around some closed loop is equal to the sum of the currents which pass through the loop". Justify the statement.	(05)
	b)	Explain Lorentz's force equation for moving charge. Enlist it's application	(05)
	c)	Point charge Q=0.2 μ C placed at origin, find electric field instensity at (0,6,8)m.	(05)
	d)	Define scalar and vector quantity with example. Also state coulomb's law.	(05)
	e)	State and derive the polarization of a dielectric materials.	(05)
Q. 2	a)	Define Biot-Savart's Law & use it to derive expression for magnetic field intensity due to infinite wire carrying current I.	(10)
Q. 2	b)	Show that the Ē due to infinte sheet of charge at a point is independent of the distance of that point form the plane containing the charge.	(10)
Q. 3	a)	An infinite long current filament is placed along z-axis. The magnetic field intensity at point $P(6,8,0)$ is $10(-1.6\overline{a_x} + 1.2\overline{a_y})A/m$. Find current through the filament.	(10)
Q. 3	b)	Derive Maxwell's second equation in both integral and point form.	(10)
Q. 4	a)	Formulate electromagnetic wave equation from Maxwell's equation for dielectric medium.	(10)
Q. 4	b)	Find \overline{D} , \overline{B} and \overline{H} displacement current density in free space, given $\overline{E} = E_m \sin(\omega t - \beta z) \overline{a_y}$.	(10)
Q. 5	a)	Prove that $E = -\nabla V$. Also derive the Poission's and Laplace equation.	(10)
Q. 5	b)	In Cartesian co-ordinate a potential is a function of x only. At $x = -2$ cm, $V = 25$ V and $\bar{E} = -1.5 \times 10^3 \bar{a}_x$ V/m throughout the region. Find V at x=5 cm.	(10)
Q. 6	a)	Draw rectangular, cylindrical and spherical co-ordinate system and explain differential element dl, differential surface ds and differential volume dv for all coordinate system	(10)
Q. 6	b)	A Charge $Q_1 = -20\mu C$ is placed at P(-6,4,6) m and a charge $Q_2 = 50\mu C$ is placed at R(5,8,-2) m in free space. Calculate the exerted force on $Q_2by\ Q_1$ in vector form.	(10)