Paper / Subject Code: 32023 / Control System

09/06/2025 TE ELECTRICAL SEM-V C-SCHEME CS QPCODE: 10086899

Time: 3 Hrs Marks: 80

N.B: (1) Question No. 1 is compulsory.

- (2) Attempt any three from the remaining questions.
- (3) Figures to the right indicate full marks.
- (4) Use Graph paper and semi log paper wherever necessary.
- 1. Attempt any four
 - (A)What are the different element of a closed loop control system.
 - (B)Derive force to voltage analogy between mechanical and electrical system.
 - (C) Explain Nyquist criterion for stability.
 - (D) Explain advantages of state space approach over conventional approach.
 - (E) Find break away point for root locus of open loop transfer system G (s)=K/S(S+8) (S+2)
- 2. (A)For a unity feedback system with open loop transfer function G(s)=100(s+5)/S (S²+7S+20) (S+10), Determine order, type of system, kp, kv, ka and steady state error for unit ramp input.
 - (B) Determine the range of operating values of K so that system will be stable for the unity feedback system having characteristic equation as $S^4+5S^3+5S^2+4s+k=0$ by Routh Hurwitz Method.
- 3. (A) For the unity feedback system find the steady state error for the following test input of 6t for G(s)=1000(S+6) / (S+7) (S+10).
 - (B) For the unity feedback system with open loop transfer function G(s)=K/S(S+10) Determine K, peak overshoot, settling time, time to peak overshoot for step input if damping factor is 0.5.
- 4. (A)Determine gain margin, phase margin, gain crossover frequency and phase cross over frequency for following transfer function:

$$G(s) = \frac{80}{s(s+2)(s+20)}$$

(B) Sketch the root locus for unity feedback system for the transfer function given below:

$$G(s) = \frac{K}{S(S+2)(S+4)}$$

5. (A) Use Mason gain formula to find C(s)/R(s) of following signal flow graph:

(B) Represent the following system in state space in phase variable form and draw its state model.

$$G(s) = \frac{20(s+5)}{s(s+1)(s+4)}$$

- 6. Write notes on any two:
 - (A) Write a short note on Time response specifications.
 - (B) Define Gain Margin, Phase Margin, Phase cross over frequency and gain Cross over Frequency in frequency domain
 - (C) Write a short note on State Transition Matrix.

Ý-----