Paper / Subject Code: 32024 / Electromagnetic Field & Wave

1T00835 - T.E.(Electiral Engineering)(SEM-V)(Choice Base Credit Grading System) (R- 19) (C Scheme) / 32024 - Electromagnetic Field & Wave QP CODE: 10028699 DATE: 31/005/2023

Duration – 3 Hours

Total Marks assigned to the paper-80

N.	В.: -	(1)	Question	No.1	is	compul	lsory.
----	-------	-----	----------	------	----	--------	--------

- (2) Attempt any Threequestions out of remaining five questions.
- (3) Assume suitable data if necessary and justify the same.

Q 1. Each questions carry 5 marks. Attempt any four questions.

- a. Prove that 'The line integral of the magnetic field around some closed loop is 05 equal to the sum of the currents which pass through the loop'.
- b. Explain Lorentz's force equation for moving charge. Enlist its application. 05
- c. Enlist any five properties of Electromagnetic waves.
- d. Point charge Q=0.5 μ C placed at origin, find electric field intensity at (0,3,4)m. 05
- e. Define gradient operator. Derive the relation between \bar{E} and the electric potential. 05
- Q 2 a) Define magnetic Potential. State how is magnetic potential analogous to electric potential? General vector potential $\overline{A} = 10\sin\theta$ $\overline{a_{\theta}}$, in spherical system. Find magnetic flux density \overline{B} at $(2,\pi/2,0)$
- Q 2 b) Formulate wave equation from Maxwell's equation. Solve it for perfectly conducting media.
- Q 3 a) An infinite long current filament is placed along z-axis. The magnetic field intensity at point P(6,8,0) is $10 \left(-1.6 \, \overline{a_y}\right)$, +1.2 $\overline{a_y}$) A/m. Find current through the filament.
- Q 3 b) Derive the expression for magnetic field intensity due to finite and infinite wire carrying current I.
- Q 4 a) Derive Maxwell's second equation in integral and point form.
- Q 4 b) Find \overline{D} , \overline{B} and \overline{H} displacement current density in free space, given $\overline{E} = E_m \sin(\omega t 10 \beta z) \overline{a_y}$.

28699

- Q 5 a) Discuss the phenomenon of electric polarization in dielectric medium.
- Q 5 b) Derive the Poisson's and Laplace equation. In Cartesian co-ordinate a potential is a function of x only. At x = -2 cm, V = 25 V and $E = -1.5 \times 10^3 \overline{a_x}$ V/m throughout the region. Find V at x=5 cm.

10

- Q 6 a) Derive electric field intensity due to an infinite plane having density $\rho_s \left(\frac{C}{m^2} \right)$.
- A Charge $\theta_1 = -20\mu C$ is placed at P(-6.4.6) m and a charge $\theta_2 = 50\mu C$ is placed at

State & explain coulomb's law in electrostatics.

Q 6 b)

A Charge $Q_1 = -20\mu C$ is placed at P(-6,4,6) m and a charge $Q_2 = 50\mu C$ is placed at R(5,8,-2) m in free space. Calculate the exerted force on Q_2by Q_1 in vector form.

28699 Page **2** of **2**