Paper / Subject Code: 32024 / Electromagnetic Field & Wave

1T00835 - T.E.(Electrical Engineering)(SEM-V)(Choice Base Credit Grading System) (R- 19) (C Scheme) / 32024 - Electromagnetic Field & Wave

QP ODE: 10038206

Time-3 Hours

Total Marks-80

N.B.: - (1) Question No.1 is compulsory.

- (2) Attempt any Three questions out of remaining five questions.
- (3) Assume suitable data if necessary and justify the same.

Q 1. Answer any four questions.

	A) Draw rectangular, cylindrical and spherical co-ordinate system and explain	05
	differential element \overline{dl} , differential surface \overline{ds} and differential volume dv for all co-ordinate system	
	B) Derive relationship between electric potential V and electric field intensity \overline{E} .	05
	C) Explain Lorentz force equation for a moving charge and its applications	05
	D) Derive Poisson's and Laplace's equation for a dielectric medium.	05
	E) Compare electric and magnetic fields using any five points.	05
Q2 a)	Derive electric field intensity \overline{E} due to infinite line charge with charge density ρ_l C/m.	10
Q 2 b)	Two point charges -4 μ c and 4 μ c are located at (2,-1,3)m and (2,-13)m respectively in free space. Find the force and electric field on 1 μ c charge at origin (0,0,0)m.	10
Q 3 a)	Derive magnetic field intensity \overline{H} due to an infinite straight conductor carrying a current I.	10
Q 3 b)	For current density $\overline{J} = 10z \sin^2 \phi \overline{a_\rho}$ A/m ² . Find the current through cylindrical surface	10
	ρ =2m,1 \leq z \leq 5m. Draw the circuit diagram and analyze the direction of current.	
Q 4 a)	Derive continuity equation for current for transient state condition.	10
Q 4 b)	In cartesian co-ordinate a potential is a function of x only. At $x = -1$ cm $V = 25$ V and	10
6	$\overline{E} = -1x10^3 \overline{a_x}$ V/m throughout the region. Find potential function V at x which is in between two plates	
Q 5 a)	Find electric flux density \overline{D} , magnetic flux density \overline{B} and magnetic field intensity \overline{H}	10
	in free space, given that $\overline{E} = E_m \sin(377t - \beta z)\overline{a_y}$.	
Q 5 b)	i. Derive the modified form of Ampere's circuital law from conventional Ampere's circuital law	10
	ii. Write a note on surface voltage gradient on conductor or an electrode	
Q 6 a)	Derive of the electromagnetic wave equation from Maxwell's equation in phasor form for any medium.	10
Q 6 b)	Derive Gauss laws in the point form for an electric field and magnetic field.	10
