Paper / Subject Code: 32023 / Control System
1T00835 - T.E.(Electrical Engineering)(SEM-V)(Choice Base Credit Grading System) (R- 19) (C Scheme) / 32023 - Control System DATE: 29/11/2023 QP CODE: 10037792 Time- 3 Hours Marks:80

- 1. Question no. 1 is compulsory
- 2. Solve any three questions out of remaining five questions
- 3. Figures to the right indicate full marks
- 4. Solve any four questions out of remaining six questions

Q. 1	Solve any four	Mar
A)	Define stability, instability in the form of crossover frequencies, GM and PM from Bode diagram.	05
B)	Plot the roots in s- plane for over damped, under damped, critically damped and undamped system.	05
C)	Compute the transfer function from state space model if $A = \begin{bmatrix} 0 & 1 \\ -3 & -8 \end{bmatrix} B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ $C = \begin{bmatrix} 3 & 4 \end{bmatrix} D = 0$	05
D)	Using Routh's stability criterion determine the range of K, so that system remain stable for unity feedback system in which open loop system is given by	05
E)	G(S)H(S)=K/S(1+S)(1+2S) Find out breakaway point for the root locus of open loop transfer function $G(S)=K/S(S+2)(S+4)$	05
Q 2 A)	Derive the relation for output time response for second order undersamped underdamped system for the step input of magnitude 2 units.	10
B)	Find out all time domain parameters for the second order underdamped transfer function	10

 $C(S)/R(S) = 12(S^2 + 4S + 8)$. Also find out expression of output response.

Using Mason's gain formula find out transfer from the given signal flow graph

10

Q3A)

Paper / Subject Code: 32023 / Control System

- B) Sketch the complete Polar plot and comment on stability for G(S) = 1/S(S+1)(2S+1)
- Q 4 A) Draw complete root locus and comment on stability for unity feedback system 10 $G(S) = K/S(S+3)(S^2 + 3S+4.5)$
 - B) Obtain state model of the transfer function $T(F) = (S^2+3S+3)/(S^3+2S^2+3S+1)$. Draw signal flow graph.
- Q 5 A) Find Type of a system, all error constants and find steady state error for unit parabolic input.

$$G(S)=1000(S+2)/S(S^3+7S^2+12S)$$

- B) Draw Bode plot and comment on stability for G(S) = 100/S(S+2)(S+5)
- Q 6 A) For unity feedback system, determine resonance peak and resonance frequency.

$$G(S)=100/S(S+5)$$

B) Construct the complete Nyquist plot for a unity feedback control system whose open loop transfer function is $G(S)H(S) = K/S(S^2 + 2S + 2)$. Find the value of K for which the system is stable.