Paper / Subject Code: 51025 / Analog Electronics

1T00833 - S.E.(Electiral Engineering)(SEM-III)(Choice Base Credit Grading System) (R-2020-21) ('C' Scheme) / 51025 - Analog

Electronics

QP CODE: 10011491 DATE:01/12/2022

Time: 3 hours Max. Marks:80

- 1. Question No.1 is compulsory.
- 2. Attempt any three from the rest.
- 3. Figure to the right indicates full marks.
- 4. Assume suitable data if it is necessary.
- Q1) Answer any four of the following (entire syllabus)
 - a. Explain Diode as positive series clipper

(05)

b. Explain BJT as a switch

(05)

c. Draw and explain the characteristics of MOSFET

(05)

- d. Draw a block diagram of Op-Amp and explain the function of level shifter block(05)
- e. What do you mean by line and load regulation in the case of a voltage regulator? (05)
- f. Explain Zener diode

(05)

Q2)

- a. Analyse full wave bridge wave rectifier along with capacitor filter. Draw all the waveforms and diagrams required to justify your answer. (10)
- b. In the following circuit of voltage divider bias calculate the Q point. (10) Given Data: $V_{CC}=22 \text{ V}$, $R_1=39\text{K}\Omega$, $R_2=3.9\text{K}\Omega$, $R_C=10\text{K}\Omega$, $R_E=1.5\text{K}\Omega$, $\beta=100$

Q3)

a. For a given BJT CE amplifier (voltage divider bias), derive an expression for voltage gain, current gain, input impedance and output impedance using h-parameter (Small signal analysis) (10)

11491

QP CODE: 10011491

b. What are the different DC biasing techniques used for MOSFET? Analyse any one technique in detail. Derive all necessary expressions for the same. (10)

Q4)

- a. Explain Op-Amp as an inverting amplifier and design an inverting amplifier for voltage gain Av = -12 (assume input resistance $R_1 = 1K\Omega$) (10)
- b. Write a short note on LED and Photodiode. Also, explain how this combination can be used in an optoisolator. (10)

Q5)

- a. Explain Op-Amp as an Instrumentation amplifier (10)
- b. Explain the Astable multivibrator using IC 555. Calculate the frequency of oscillation if $R_A=R_B=7.5k\Omega$ and $C=0.01\mu F$ (10)

Q6)

- a. Derive expressions for voltage gain and output impedance of any one MOSFET CS amplifier circuit. (10)
- b. Explain Op-Amp as a voltage-summing amplifier and derive an expression for voltage gain. (10)
