	Duration: 3 hrs [Max Marks: 80]	
N.B. :	 (1) Question No 1 is Compulsory. (2) Attempt any three questions out of the remaining five. (3) All questions carry equal marks. (4) Assume suitable data, if required and state it clearly. 	[20]
a	Differentiate Finite Automata, Push Down Automata and Turing Machine.	20
b	Discuss different applications of Finite Automata	KO'
c	Design DFA that accepts Strings with at least 3 a's. over $\Sigma = \{a,b\}$.	
d	Simplify the given grammar $S \rightarrow ASB \mid \epsilon$ $A \rightarrow aAS \mid a$ $B \rightarrow SbS \mid A \mid bb$	So Sili
2 a	Compare and Contrast Moore and Mealy Machines. Design Moore machine for $\Sigma = \{0,1\}$, print the residue modulo 3 for binary numbers.	[10]
b	Design Push Down Machine that accepts $L = \{a^m b^n c^n d^m \mid m, n>0 \}$	[10]
3 a	 i) Construct CFG for given language. L = { 0ⁱ 1^j 0^k j>i+k} ii) The grammar G is S → aB bA A → a aS bAA B → b bS aBB Obtain parse tree for the following string "aababb" and check if the grammar is 	[10]
b	ambiguous. Explain Pumping Lemma with the help of a diagram to prove that given language is not a regular language. $L=\{0^m1^{m+1} m>0\}$	[10]
4 a	 i) Design DFA that accepts Strings that ends in either "110" or "101" over ∑={0,1}. ii) Design NFA that accepts strings starting with "abb" or "bba" 	[10]
b	Given NFA with epsilon, Find equivalent DFA. q1 is the initial state, q3 is final state	[10]
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
5 a	Find Equivalent Greibach Normal Form (GNF) for given CFG. S → AA a A → SS b	[10]
b	Define and design Turing Machine to accept $0^n 1^n 2^n$ over $\Sigma = \{0,1,2\}$.	[10]
6	Write Short notes (Any Two)	[20]
a	Explain with example Chomsky Hierarchy.	
b	Post Correspondence Problem.	
c	Recursive and Recursive enumerable languages.	
d	TM-Halting Problem.	