Paper / Subject Code: 31921 / Theoretical Computer Science T.E. SEM V COMP / R-2019 / NOV 2022/ 22.11.2022 ## T.E. OLIVI V GOIVII 71 LG1671 G V LGLL LL VILLE | Time: 3.00 Hrs. | Marks: 80 | |---|---| | N.B.: (1) Question No. 1 is compulsory. (2) Attempt any three questions out of the rem (3) Assumptions made should be clearly stated (4) Figures to the right indicate full marks. (5) Assume suitable data whenever required by | EXAM! | | 1. a) Differentiate between NFA and DFA. b) Compare and contrast Moore and Mealy machine. c) Explain variants of Turing Machine. d) Show that the following grammer is ambiguable S> aSbS bSaS ε | 5 | | 2. a) Convert the following RE into NFA with ε-RE = (0+ε) (10)*(ε+1) b) Consider the following grammer G = { V, productions P are : S> aSb aX X> Xa Sa a . Convert the grammer in Greibach Normal F |).
Γ, P, S), $V = \{ S, X \}$, $T = \{ a, b \}$ and | | 3. a) Construct PDA accepting the language L = b) Construct TM to check well formedness of | | | 4. a) Design Mealy machine to recognize r = (0 Moore machine. b) Consider the following grammer: S> i C t S i C t S e S a C> b . For the string "ibtaeibta", find the following in Left most derivation, ii) Right most derivation. | ng: | | iii) Parse tree, iv) Check if the above g | grammer is ambiguous or not. | | 5. a) Design a Turing machine that computes a function integers. b) Give the formal definition of pumping lemmather than the following language is not regular: L = { 0^m1^{m+1} m > 0 }. | 10 | | 6. Write short note on following (Any two):a) Chomsky Hierarchy.b) Decision properties of regular languages | 20 | c) Rice's theorem. d) Definition and working of PDA.