TE | CIVIL | VI | R 19 | FH2022 | WRE 1 2115/22 EXTRO University of Mumbai & P Cocle: 93489 Examinations Summer 2022

Time: 2hour 30 minutes Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks									
1.	For growing irrigated paddy, the ideal water application method is.									
Option A:	drip irrigation									
Option B:	flood irrigation									
Option C:	zigzag irrigation									
Option D:	sprinkler irrigation									
2.	Dupuit's assumptions are valid for									
Option A:	artesian aquifer									
Option B:	confined aquifer									
Option C:	leaky aquifer									
Option D:	unconfined aquifer									
3.	If the intensity of irrigation for Kharif is 45% and that for Rabi is 60%; then the annual intensity of irrigation, is:									
Option A:	45%									
Option B:	60%									
Option C:	100%									
Option D:	105%									
4.	A hyetograph is a graphical representation of									
Option A:	Rainfall intensity and time									
Option B:	Rainfall depth and time									
Option C:	Discharge and time									
Option D:	Cumulative rainfall and time									
Option D.	Continue to familiary and time									
5	In case of a flowing well, the piezometric surface									
Option A:	is always below the ground level									
Option B:	is always above the ground level									
Option C:	is always at the ground level									
Option D:	may be above or below the ground level									
Option D.	may be above of below the ground level									
6.	One amount the following to Carol ECCARE									
Option A:	One amongst the following is Canal ESCAPE Cutting Escape									
Option B:										
	Scouring Escape									
Option C:	Unbalanced Escape									
Option D:	Balanced Escape									
7.	For no tension to be develop in the gravity dam the eccentricity of the resultant force should be									
Option A:	 b/2 >> .									
Option B:	<6/3									
Option C:	 b/4									
Option D:	₫ b/6									
8.	Which of the following is not a type of precipitation?									
Option A:	Arithmatic									
Option B:	Orographic									
Section and and										
Option C:	Convective									

9.	Which of the following is a false statement?
Option A:	Canal lining reduces seepage losses
Option B:	Canal lining is a permeable layer
Option C:	Canal lining improves the life of a canal
Option D:	Canal lining improves discharge capacity of a canal
10.	According to Lacey's, what is the proposed shape of regime channel?
Option A:	Hyper-bolic
Option B:	Circular
Option C:	Rectangular
Option D:	Semi-elliptical Semi-elliptical

	Q. 2 20 Marks
	Solve any four Questions out of Six 5 marks each
1.	Compare Kennedy and Lacey's theories
2.	Define the following: aquifer, aquifuge, aquiclude, transmissibility, drawdown, cone of depression.
3.	Derive the relation between duty, delta and base period. Also find delta for a crop if duty for a base period of 100 days is 1800 ha/cumecs.
4.	Explain any one type of Automatic rain gauge instrument with sketch.
5.	Explain in detail with a neat sketch different Zones of Storage of Reservoirs
6.	Describe hydrograph and hyetograph. Also draw neat diagrams

Compression of the Compression o	Solve an	v Tw	o Or	esti	ons (out of	Thre	e	250		10 r	nark	s eac	eh		
	1 3 67 5	- 100	1	20,00	50 20	CA	3.	G 5- R		5(0)						
1.	Using Lacey's theory, design an irrigation channel for the following data: Discharge Q-cumees, silt factor f=1, side slopes = 0.5H:1V								Q=.							
2.	Describe in detail the failures of an earthen dam, along with neat diagrams															
18.30	Given below are the ordinates of a 6h unit hydrograph for a catchment. Calculate the ordinates of direct runoff hydrograph due to a rainfall excess of 4.5															
	Time	0	3	6	9	12	15	18	24	30	36	42	48	54	60	69
3.	hrs	0	25	50	85	125	160	185	160	110	60	36	25	16	8	0

	0.4	20 Marks						
	Solve any Two Questions out of Three	10 marks each						
1,	Define Precipation. Explain any one type of precipit							
20	Describe with the help of sketches various types of Cross Drainage Work.							
3.	For a homogenous Earthen Dam with height = 52m constructed and following results were obtained. No Number of Flow Channels = 4. Dam has horizontal Calculate discharge per meter length of dam. A permeability of the dam is 3 x 10^-5 m/sec B) So m/sec and ky = 10^-6 m/sec	and freeboard of 2m, flow net was umber of potential drops = 25, I filter 40 m in length at itsdownstream end.						