15/05/2025 BE CHEMICAL SEM-VIII C-SCHEME ESD QP CODE: 10085557

[3 Hours]

N.B.: (1) Question No 1 is compulsory

- (2) Attempt any three questions out of remaining five questions
- (3) Assume suitable data if necessary and indicate it clearly.
- (4) Figures to the right indicate full marks.
- Q.1. Solve the following (Any Four)

2

12

[Total Marks: 80]

- (a) What is energy pricing & energy security?
- (b) List out the steps involved in energy audit methodology.
- (c) Explain any four techniques to make compressed air system energy efficient.
- (d) Describe concept of new & renewable energy sources.
- (e) What is cogeneration? Explain its benefits.
- (f) Explain the concept of Heat integration using Heat exchanger networking.
- Q.2. (a) Consider a system where heat is being exchanged among hot & cold streams to meet MER target for which data is given below:

Stream No.	Ts (⁰ C)	Tt (⁰ C)	mCp (kW/0C)
5 1 ST	180	60	3
2	150	30	(FT)
3	20	135	2
4	80	140	5

If ΔT_{min} = 10°C, find the minimum hot & cold utility requirements as well as the pinch temperature for this system. Also calculate minimum number of heat exchangers required for this system.

- (b) Explain energy conservation & its importance; also discuss Indian energy scenario in terms of major energy sources, energy consumption pattern, major problems in energy sector, energy intensive industries.
- Q.3. (a) Estimate steam flow rate required to design a heat recovery steam generator. The steam is to be used for power generation & is to be expanded in a 5000 RPM multistage condensing turbine to produce a maximum of 18500 kW. Steam inlet condition is 600 psig. Additional data is given below:

PGC: 18500 kW Inlet steam: 600 psig

Enthalpy, h_i: 1378.9 Btu/lb Enthalpy, h_o: 935.0 Btu/lb Turbine speed: 5000 RPM Turbine efficiency: 77%

- (b) With suitable diagram explain the following waste heat recovery equipments:
 - i) Heat Pump
 - ii) Recuperator

85557

Q.4. (a) Design a feasible Heat Exchanger Network (HEN) to satisfy minimum energy requirement for this system where heat is being exchanged among hot & cold streams for which data is given below. ΔT_{min} for this system is 30 °C, Hot pinch temperature is 90 °C and $Q_{H,min}$ and $Q_{C,min}$ are 160 kW and 190 kW respectively.

Data:

Stream No.	Ts (⁰ C)	Tt (⁰ C)	mCp (kW/0C)
1	140	70	3
2	100	40	5
3	60	80	6
4	30	120	8 4

(b) What is Geothermal energy? Explain its various applications.

(c) Explain topping & bottoming cycle in cogeneration system.

- Q.5. (a) Explain topping & bottoming cycle in cogeneration system.
 (b) What is energy audit? Explain different types of energy audit.
 10
 10
- Q.6. Write short notes on the following (Any four)
 - (a) Vapour recompression in distillation column.
 - (b) Instruments used in energy audit.
 - (c) Basic equation & rules of heat exchanger networking introduced by Linnhoff
 - (d) Energy efficient practices in Lighting system
 - (e) Importance of waste heat recovery
 - (f) Working of Tidal Energy system

****<mark>**</mark>**<mark>*</mark>*****